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Abstract
Avian Influenza epidemics have an impact on human life both in the health and
economic fields. This epidemic is one of major problem that causes the infected human
get hospitalization. Some action are needed to prevent and reduce the impact of this
outbreak. The actions which were done are vaccination in poultry, burning infected
poultry, quarantining and giving treatment infected humans.
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1. Introduction

Avian influenza is one of epidemics that have amajor impact on human life both in health
and economic fields. Avian Influenza (AI) virus can be transmitted to humans (see [1],
[2], [3]). Because of that, This epidemic causes the infected human get hospitalization.
AI viruses is known as the flu that attacks poultry and mammals (see [4]). Aulia et al ([5])
stated that AI virus was transmitted through the air by coughing or sneezing, which will
lead to aerosol containing the virus. This epidemic had a great influence like as profit
loss on the economic aspects of poultry-related issues (see [6]).

Gooskens et al ([8]) stated that there was a mutation of influenza A virus that immune
to oseltamivir. de Jong et al in [7] mentioned that the H5N1 subtype virus has immunity
from drug. The mutation virus is contagious pathogenic and lethal for high-risk patients.
H5N1 virus has high mutation ability. Because of that, this virus needs more attention
to prevent becoming an outbreak in poultry and human. Kharis and Amidi in [9] devel-
oped mathematical model of avian influenza epidemics poultry vaccination in constant
population. Model in [9] used assumption that success ratio of vaccination is 100%. In
this paper, we will develope the model using vactination in poultry and treatment of
infected human.
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2. Methods

The method of this research is analysis method of deterministic mathematic model.
Analysis method has some step. The first step is analysis of the equilibrium points
existence. The next step is stability analysis of the equilibrium point. The next step
is making simulation to clarify the result of the analysis. We do literacy study before
developing model. In this activity, we determine facts and assumption which will be
used to develop the model.

3. Mathematical Model

In this paper, we bounded the model by assuming human population is constant. In
human, the birth rate has same value with natural death rate. We also assuming that the
probability of success of vaccination has value 𝑝 which is 0 ≤ 𝑝 ≤ 1 and the vaccinated
poultry will be immune toward infection within the period of epidemics. We also assume
that the death of infected poultry was only caused of infection. Transfer diagram of AI
epidemic was given at Fig. 1.

Figure 1: Transfer diagram of AI epidemic with vaccination and treatment.

Where 𝑁 is the total number of human, 𝑆 is total number of susceptible human, 𝐼 is
total number of infected human,𝑅 is total number of recovered human, 𝑇 is total number
of recovered human,𝑁𝑏 is the total number of poultry, 𝑆𝑏 is total number of susceptible
poultry, and 𝐼𝑏 is total number of infected poultry, and 𝑉𝑏 is total number of vaccinated
poultry. The meaning of parameters in human population: 𝜇 means birth rate in human
is assumed same with natural death rate, 𝛽1 means probability of infectious contact
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among human, 𝛽2 means probability of infectious contacts between susceptible human
and infected poultry, 𝛾 means recovery rate of infected human, 𝑞 means proportion of
infected human that are given treatment, 𝛼 means recovery rate by treatment, and 𝜃
means immunity loss rate. The meaning of parameters in poultry population: 𝜇𝑏 means
birth rate in poultry is assumed same with natural death rate, 𝛽𝑏 means probability of
infectious contact among poultry, 𝜇𝑏 means natural death rate in poultry, 𝑚𝑏 means
rate of death by infection in poultry, 𝛿 means the proportion of susceptible bird to be
vaccinated every unit time, and 𝑝 is success ratio of vaccination. From Fig. 1 we construct
System (1).

𝑑𝑆
𝑑𝑡 = 𝜇𝑁 + 𝜃𝑅 − 𝑆

𝑁 (𝛽1𝐼 + 𝛽2𝐼𝑏) − 𝜇𝑆

𝑑𝐼
𝑑𝑡 =

𝑆
𝑁 (𝛽1𝐼 + 𝛽2𝐼𝑏) − (𝜇 + 𝛾 + 𝑞) 𝐼

𝑑𝑇1
𝑑𝑡 = 𝑞𝐼 − (𝜇 + 𝛼) 𝑇1

̇𝑑𝑅
𝑑𝑡 = 𝛼𝑇1 + 𝛾𝐼 − (𝜃 + 𝜇)𝑅

𝑑𝑆𝑏
𝑑𝑡 = 𝜇𝑏𝑁𝑏 − [𝛽𝑏 (1 − 𝛿𝑝) 𝐼𝑏𝑁𝑏

+ 𝛿𝑝 + 𝜇𝑏]𝑆𝑏 (1)

𝑑𝐼𝑏
𝑑𝑡 = 𝛽𝑏 (1 − 𝛿𝑝) 𝑆𝑏

𝑁𝑏
𝐼𝑏 − 𝑚𝑏𝐼𝑏

𝑑𝑉𝑏
𝑑𝑡 = 𝛿𝑝𝑆𝑏 − 𝜇𝑏𝑉𝑏

𝑆 + 𝐼 + 𝑇 + 𝑅 = 𝑁

𝑆𝑏 + 𝐼𝑏 + 𝑉𝑏 = 𝑁𝑏

We assumed that 𝛽1 = 𝛽2 = 𝛽 and 𝑚𝑏 = 𝜇𝑏.
Clear that 𝑑𝑁

𝑑𝑡 = 0⟺𝑁 = 𝐾 > 0,𝐾 ∈ 𝑅 and 𝑅 = 𝑁 − 𝐼 − 𝑆 − 𝑇1 = 𝐾 − 𝐼 − 𝑆 − 𝑇1.
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Clear that 𝑑𝑁𝑏
𝑑𝑡 = 0⟺𝑁𝑏 = 𝐾𝑏 > 0,𝐾𝑏 ∈ 𝑅 and 𝑉𝑏 = 𝑁𝑏 − 𝐼𝑏 − 𝑆𝑏 = 𝐾𝑏 − 𝐼𝑏 − 𝑆𝑏.

Hence, we get System (2).

𝑑𝑆
𝑑𝑡 = 𝜇𝐾 + 𝜃 (𝐾 − 𝐼 − 𝑆 − 𝑇1) − 𝛽 𝑆𝐾 (𝐼 + 𝐼𝑏) − 𝜇𝑆

𝑑𝐼
𝑑𝑡 = 𝛽 𝑆𝐾 (𝐼 + 𝐼𝑏) − (𝜇 + 𝛾 + 𝑞) 𝐼

𝑑𝑇1
𝑑𝑡 = 𝑞𝐼 − (𝜇 + 𝛼) 𝑇1

𝑑𝑆𝑏
𝑑𝑡 = 𝜇𝑏𝐾𝑏 − [𝛽𝑏 (1 − 𝛿𝑝) 𝐼𝑏𝐾𝑏

+ 𝛿𝑝 + 𝜇𝑏]𝑆𝑏 (2)

𝑑𝐼𝑏
𝑑𝑡 = 𝛽𝑏 (1 − 𝛿𝑝) 𝑆𝑏

𝐾𝑏
𝐼𝑏 − 𝜇𝑏𝐼𝑏

Domain of System (2) is defined

Γ = {𝑃 ∈ 𝑅+
5 𝑃 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏) where 0 ≤ 𝑆 + 𝐼 + 𝑇1 ≤ 𝐾 and 0 ≤ 𝑆𝑏 + 𝐼𝑏 < 𝐾𝑏}

The existence of equilibrium points of System (2) is given in Theorem 1.

Theorem 1. Let

𝑟0 =
𝛽𝑏 (1 − 𝛿𝑝)
(𝜇𝑏 + 𝛿𝑝)

and

𝑅0 =
𝛽

𝜇 + 𝛾 + 𝑞 .

1. If 𝑟0 < 1 and𝑅0 < 1 then System (2) has only one equilibrium point i.e. non endemic
equilibrium point

𝑃0 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏) = (𝐾, 0, 0,
𝜇𝑏𝐾𝑏
𝛿𝑝 + 𝜇𝑏

, 0) .

2. If 𝑟0 < 1 and 𝑅0 > 1 then System (2) has two equilibrium i.e 𝑃0 and

𝑃1 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏)

= (
𝐾 (𝜇 + 𝛾 + 𝑞)

𝛽 , 𝐾 (𝜇 + 𝜃) (𝜇 + 𝛼) [𝛽 − (𝜇 + 𝛾 + 𝑞)]
𝛽 [(𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞 + 𝜃) + 𝑞] , 𝐾 (𝜇 + 𝜃) 𝑞 [𝛽 − (𝜇 + 𝛾 + 𝑞)]

𝛽 [(𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞 + 𝜃) + 𝑞] ,
𝜇𝑏𝐾𝑏
𝛿𝑝 + 𝜇𝑏

, 0)
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3. If 𝑟0 > 1 then System (2) has Three equilibrium i.e 𝑃0, 𝑃1, and

𝑃2 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏) = (
𝐾 (𝜇 + 𝛾 + 𝑞) 𝐼1
𝛽 (𝐼1 + 𝐼𝑏)

, 𝐼1,
𝑞𝐼1
𝜇 + 𝛼 ,

𝜇𝑏 𝐾𝑏
𝛽𝑏 (1 − 𝛿𝑝) , 𝐼𝑏 )

where

𝐼𝑏 =
𝐾𝑏 [𝛽𝑏 (1 − 𝛿𝑝) − (𝛿𝑝 + 𝜇𝑏)]

𝛽𝑏 (1 − 𝛿𝑝)

and

𝐼2 =
−𝐴1 −√𝐴2

1 − 4.𝐴2.𝐴0

2𝐴2

where

𝐴2 = −𝛽 [(𝜇 + 𝛼) + 𝑞 + (𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞)]

𝐴1 = 𝐾 (𝜇 + 𝛼) [𝛽 (𝜇 + 𝜃) − (𝜇 + 1) (𝜇 + 𝛾 + 𝑞)] − 𝛽𝐼𝑏 [(𝜇 + 𝛼 + 𝑞) + (𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞)]

𝐴0 = 𝐾𝛽𝐼𝑏 (𝜇 + 𝛼) (𝜇 + 𝜃) .

Proof:

The equilibrium points were solution of System (3).

𝜇𝐾 + 𝜃 (𝐾 − 𝐼 − 𝑆 − 𝑇1) − 𝛽 𝑆𝐾 (𝐼 + 𝐼𝑏) − 𝜇𝑆 = 0

𝛽 𝑆𝐾 (𝐼 + 𝐼𝑏) − (𝜇 + 𝛾 + 𝑞) 𝐼 = 0

𝑞𝐼 − (𝜇 + 𝛼) 𝑇1 = 0

𝜇𝑏𝐾𝑏 − [𝛽𝑏 (1 − 𝛿𝑝) 𝐼𝑏𝐾𝑏
+ 𝛿𝑝 + 𝜇𝑏]𝑆𝑏 = 0 (3)

𝛽𝑏 (1 − 𝛿𝑝) 𝑆𝑏
𝐾𝑏

𝐼𝑏 − 𝜇𝑏𝐼𝑏 = 0
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From the fifth equation of System (3), we get

𝐼𝑏 = 0 ∨ 𝑆𝑏 =
𝜇𝑏 𝐾𝑏

𝛽𝑏 (1 − 𝛿𝑝) .

Case of 𝐼𝑏 = 0:
Substitute the value of 𝐼𝑏 to the fourth equation, we get

𝑆𝑏 =
𝜇𝑏𝐾𝑏
𝛿𝑝 + 𝜇𝑏

.

Substitute the value of 𝐼𝑏 to the second equation, we get

𝐼 = 0 ∨ 𝑆 = 𝐾 (𝜇 + 𝛾 + 𝑞)
𝛽 .

Case of 𝐼 = 0 ∶
Substitute the value of 𝐼 to the third equation, we get 𝑇1 = 0
Substitute the value of 𝐼𝑏, 𝐼 , and 𝑇1 to the first equation, we get 𝑆 = 𝐾.
Hence, we get

𝑃0 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏) = (𝐾, 0, 0,
𝜇𝑏𝐾𝑏
𝛿𝑝 + 𝜇𝑏

, 0) .

Case of 𝐼 ≠ 0 ∶
Clear that

𝑆 = 𝐾 (𝜇 + 𝛾 + 𝑞)
𝛽 .

From the third equation, we get

𝑇1 =
𝑞𝐼

𝜇 + 𝛼 .

Substitute to the first equation then we get

𝐼 = 𝐾 (𝜇 + 𝜃) (𝜇 + 𝛼) [𝛽 − (𝜇 + 𝛾 + 𝑞)]
𝛽 [(𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞 + 𝜃) + 𝑞] .

Clear that if 𝑅0 = 𝛽
𝜇+𝛾+𝑞 > 1 then 𝐼 > 0.
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Hence, we get if 𝑅0 > 1 then

𝑃1 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏)

= (
𝐾 (𝜇 + 𝛾 + 𝑞)

𝛽 , 𝐾 (𝜇 + 𝜃) (𝜇 + 𝛼) [𝛽 − (𝜇 + 𝛾 + 𝑞)]
𝛽 [(𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞 + 𝜃) + 𝑞] , 𝐾 (𝜇 + 𝜃) 𝑞 [𝛽 − (𝜇 + 𝛾 + 𝑞)]

𝛽 [(𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞 + 𝜃) + 𝑞] ,
𝜇𝑏𝐾𝑏
𝛿𝑝 + 𝜇𝑏

, 0)

The case of 𝐼∗𝑏 ≠ 0:
Clear that

𝑆𝑏 =
𝜇𝑏 𝐾𝑏

𝛽𝑏 (1 − 𝛿𝑝) .

From the fourth equation, we obtain

𝐼𝑏 =
𝐾𝑏 [𝛽𝑏 (1 − 𝛿𝑝) − (𝛿𝑝 + 𝜇𝑏)]

𝛽𝑏 (1 − 𝛿𝑝) .

Let

𝑟0 =
𝛽𝑏 (1 − 𝛿𝑝)
(𝜇𝑏 + 𝛿𝑝)

.

Clear that for 𝑟0 > 1, we got

𝛽𝑏 (1 − 𝑝)
(𝜇𝑏 + 𝛿𝑝)

> 1⟺ 𝛽𝑏 (1 − 𝛿𝑝) − (𝛿𝑝 + 𝜇𝑏) > 0.

Hence, if 𝑟0 > 1 then 𝐼𝑏 > 0.
From the third equation of System (3), we obtained

𝑇1 =
𝑞𝐼

𝜇 + 𝛼 .

From the second equation of System (3), we got

𝛽 𝑆𝐾 (𝐼 + 𝐼𝑏) = (𝜇 + 𝛾 + 𝑞) 𝐼 ⇔ 𝑆 = 𝐾 (𝜇 + 𝛾 + 𝑞) 𝐼
𝛽 (𝐼 + 𝐼𝑏)

.

From the first equation, we got

𝐴2𝐼2 + 𝐴1𝐼 + 𝐴0

𝛽 (𝐼 + 𝐼𝑏) (𝜇 + 𝛼)
= 0 ⇔ 𝐴2𝐼2 + 𝐴1𝐼 + 𝐴0 = 0

Where

𝐴2 = −𝛽 [(𝜇 + 𝛼) + 𝑞 + (𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞)]
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𝐴1 = 𝐾 (𝜇 + 𝛼) [𝛽 (𝜇 + 𝜃) − (𝜇 + 1) (𝜇 + 𝛾 + 𝑞)] − 𝛽𝐼𝑏 [(𝜇 + 𝛼 + 𝑞) + (𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞)]

𝐴0 = 𝐾𝛽𝐼𝑏 (𝜇 + 𝛼) (𝜇 + 𝜃)

Clear that 𝐴2 < 0 and 𝐴0 < 0.
Clear that 𝐴2

1 − 4.𝐴2.𝐴0 > 𝐴2
1 > 0 for every sign of 𝐴2, so we got

𝐼1 =
−𝐴1 −√𝐴2

1 − 4.𝐴2.𝐴0

2𝐴2
> 0 𝑎𝑛𝑑 𝐼2 =

−𝐴1 +√𝐴2
1 − 4.𝐴2.𝐴0

2𝐴2
< 0.

Hence, we got

𝑃2 = (𝑆, 𝐼, 𝑇1, 𝑆𝑏, 𝐼𝑏) = (
𝐾 (𝜇 + 𝛾 + 𝑞) 𝐼1
𝛽 (𝐼1 + 𝐼𝑏)

, 𝐼1,
𝑞𝐼1
𝜇 + 𝛼 ,

𝜇𝑏 𝐾𝑏
𝛽𝑏 (1 − 𝛿𝑝) , 𝐼𝑏 )

where

𝐼𝑏 =
𝐾𝑏 [𝛽𝑏 (1 − 𝛿𝑝) − (𝛿𝑝 + 𝜇𝑏)]

𝛽𝑏 (1 − 𝛿𝑝)

and

𝐼2 =
−𝐴1 −√𝐴2

1 − 4.𝐴2.𝐴0

2𝐴2

where

𝐴2 = −𝛽 [(𝜇 + 𝛼) + 𝑞 + (𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞)]

𝐴1 = 𝐾 (𝜇 + 𝛼) [𝛽 (𝜇 + 𝜃) − (𝜇 + 1) (𝜇 + 𝛾 + 𝑞)] − 𝛽𝐼𝑏 [(𝜇 + 𝛼 + 𝑞) + (𝜇 + 𝛼) (𝜇 + 𝛾 + 𝑞)]

𝐴0 = 𝐾𝛽𝐼𝑏 (𝜇 + 𝛼) (𝜇 + 𝜃) .

The Stability of equilibrium points of System (2) is given in Theorem 2.

Theorem 2. Let

𝑟0 =
𝛽𝑏 (1 − 𝛿𝑝)
(𝜇𝑏 + 𝛿𝑝)

and

𝑅0 =
𝛽

𝜇 + 𝛾 + 𝑞 .
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1. If 𝑟0 < 1 and 𝑅0 < 1 then 𝑃0 is locally asymptotically stable

2. If 𝑟0 < 1 𝑎𝑛𝑑 𝑅0 > 1 then 𝑃0 is unstable and 𝑃1 is locally asymptotically stable.

3. if 𝑟0 > 1 then 𝑃0 and 𝑃1 are unstable.

Proof:
The Jacobian matrix of System (2) was given below

𝐽 (𝑃 ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝜃 −
𝛽 (𝐼 + 𝐼𝑏)

𝐾 − 𝜇 −𝜃 − 𝛽𝑆
𝐾 −𝜃 0 −𝛽𝑆𝐾

𝛽 (𝐼 + 𝐼𝑏)
𝐾 𝛽 𝑆𝐾 − (𝜇 + 𝛾 + 𝑞) 0 0 𝛽𝑆

𝐾
0 𝑞 − (𝜇 + 𝛼) 0 0

0 0 0 − [𝛽𝑏 (1 − 𝛿𝑝) 𝐼𝑏𝐾𝑏
+ 𝛿𝑝 + 𝜇𝑏]

−𝛽𝑏 (1 − 𝛿𝑝) 𝑆𝑏
𝐾𝑏

0 0 0 𝛽𝑏 (1 − 𝛿𝑝) 𝐼𝑏𝐾𝑏
𝛽𝑏 (1 − 𝛿𝑝) 𝑆𝑏

𝐾𝑏
− 𝜇𝑏

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For 𝑃0, we got eigen values of 𝐽 (𝑃0):

𝜆1 = − (𝜃 + 𝜇) , 𝜆2 = 𝛽−(𝜇 + 𝛾 + 𝑞) = (𝜇 + 𝛾) (𝑅0 − 1) , 𝜆3 = −(𝜇+𝛼), 𝜆4 = −(𝛿𝑝 + 𝜇𝑏) ,

and

𝜆5 =
𝜇𝑏

𝛿𝑝 + 𝜇𝑏 [
𝛽𝑏 (1 − 𝛿𝑝) − (𝛿𝑝 + 𝜇𝑏)] = 𝜇𝑏 (𝑟0 − 1) .

Hence, 𝜆1, 𝜆3, and 𝜆4 are negative, 𝜆2 < 0 if 𝑅0 < 1 and 𝜆2 > 0 if 𝑅0 > 1.
Clear that 𝜆5 < 0 if 𝑟0 < 1 and 𝜆5 > 0 if 𝑟0 > 1.
For 𝑃1, we got characteristics equation of Matrix 𝐽 (𝑃1) ∶

1
(𝜇 + 𝛾 + 𝜃) [(

𝜆 + 𝜇𝑏) (𝜆 + 𝛿𝑝 + 𝜇𝑏)(
𝜆 −

𝛽𝑏 (1 − 𝛿𝑝) 𝜇𝑏 − (𝜇𝑏 + 𝑚𝑏 +𝑀)(𝛿𝑝 + 𝜇𝑏)
(𝛿𝑝 + 𝜇𝑏) ) (𝐴𝜆2 + 𝐵𝜆 + 𝐶)]

= 0

where 𝐴 = 𝜇 + 𝛾 + 𝜃, 𝐵 = (𝜇 + 𝜃) (𝜇 + 𝜃 + 𝛾) + (𝜇 + 𝛾) [𝛽 − (𝜇 + 𝛾)], and

𝐶 = (𝜇 + 𝜃) (𝜇 + 𝜃 + 𝛾) [𝛽 − (𝜇 + 𝛾)]

Clear that 𝐴 > 0 for every 𝑅0, 𝐵 > 0 and 𝐶 > 0 if 𝑅0 > 1.

𝐹𝑟𝑜𝑚 (𝜆 + 𝜇𝑏) (𝜆 + 𝛿𝑝 + 𝜇𝑏)(
𝜆 −

𝛽𝑏 (1 − 𝛿𝑝) 𝜇𝑏 − (𝜇𝑏 + 𝑚𝑏 +𝑀)(𝛿𝑝 + 𝜇𝑏)
(𝛿𝑝 + 𝜇𝑏) )

= 0

We got

𝜆1 = −𝜇𝑏, 𝜆2 = −(𝛿𝑝 + 𝜇𝑏) ,
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and

𝜆3 =
𝛽𝑏 (1 − 𝛿𝑝) 𝜇𝑏 − (𝜇𝑏 + 𝑚𝑏 +𝑀)(𝛿𝑝 + 𝜇𝑏)

(𝛿𝑝 + 𝜇𝑏)
.

Hence, 𝜆1 < 0 and 𝜆2 < 0, 𝜆3 < 0 if 𝑟0 < 1 and 𝜆3 > 0 if 𝑟0 > 1.
From 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0 where 𝐴 > 0 for every 𝑅0, 𝐵 > 0 and 𝐶 > 0 if 𝑅0 > 1, we got

𝜆4 =
−𝐵 −√𝐵2 − 4.𝐴.𝐶

2𝐴 𝑎𝑛𝑑 𝜆5 =
−𝐵 +√𝐵2 − 4.𝐴.𝐶

2𝐴 .

Because 𝐴 > 0 and 𝐶 > 0 then 𝐵2 − 4𝐴𝐶 < 𝐵2 and because 𝐵 > 0 then 𝑅𝑒 (𝜆4) < 0
and 𝑅𝑒 (𝜆5) < 0 for every sign of 𝐵2 − 4𝐴𝐶 .

For 𝑃2, it was complicated to determine the eigen values of jacobian matrix 𝐽 (𝑃2)
so we suspended it.

4. Conclusion and Discussion

From analysis above, we get the dynamic of mathematics model of AI epidemic with
vaccination where this activity has succes ratio. We also got the reproduction number
which can be used to determine whether the epidemic spread widely or vanish. For the
next research, we propose to make the mathematics model for non constant population
in both population.
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