Phase Composition of Mo-Si-V Hypoeutectic Alloys


Thermodynamic modeling (TDM) of phase formation was performed with vanadium doping of the hypoeutectic Mo-Si alloy. It was found that the thermochemical properties of vanadium silicides (presented in the HSC Chemistry 6.12 database), when modeling Mo-Si(14.5-12.2)-V(5.0-20.0) alloys, lead to inadequate results regarding Mo-Si-V diagram state indicators. The simulation results agree satisfactorily with the Mo-Si-V diagram with the following values of ΔH0 298: for V3Si = - 180.4 kJ / mol, for V5Si3 = -433.6 kJ / mol, for VSi2 = -124.5 kJ / mol. According to the results of TDM and X-ray phase analysis (XRD) of the obtained alloys, it was found that vanadium in Mo-Si-V ternary alloys can be found both in the form of silicides, (Mo,V)3Si, and in the composition of the solid solution (Mo,V)

[1] Bewlay, B.P., Jackson, M.R., Zhao, J.C., et. al. (2003). A review of very-hightemperature Nb – silicide-based composites. Metall. And Mater. Trans, vol. 34A, pp.2043-2052.

[2] Svetlov, I.L. (2010). High temperature Nb-Si-composites. Materialovedenie, no. 9, pp.29-38; no. 10, pp.18-27.

[3] Grastchenko, D.V., Schtetanov, B.V., Efimochkin, I.Yu. (2011). The development of powder metallurgy for heat-resistant materials. All materials. Encyclopedic reference, no.5,

[4] Vasudevan, A.K., Petrovic, J. (1992). A comparative overview of molibdenium disilicide composites. Mater. Sci and Engin., vol. A155, pp. 1-17.

[5] Hebsur, M.H. (1999). Development and characterization of SiC/MoSi2-Si3N4 hybrid composites. Mater Sci and Eng, vol. A261, pp. 24-37.

[6] Mousa, M., Wanderka, N., Timpel M. et. al. (2011). Modification of Mo-Si alloy microstructure by small additions of Zr. Ultramicroscopy, vol.111, no. 6, pp. 706-710.

[7] Ghayoumabadi, Esmaeili M., Saidi, A., Abbasi, M.H. (2009). Lattice variations and phase evolutions during combustion reactions in Mo-Si-Al system. Journal of Alloys and Compounds, vol. 472, no. 1-2, pp. 84-90.

[8] Rosales, I., Schneibel, J.H. (2000). Stoichiometry and mechanical properties of Mo3Si. Intermetallics, no. 8, pp. 885-889.

[9] Larionov, A.V., Udoeva, L.Yu., Chumarev, V.M., et. al. (2015). Thermodynamic simulation of phase formation in the Mo-Si alloys doped with yttrium. Butlerov Communications, vol. 43, no. 9, pp. 84-88.

[10] Larionov, A.V., Udoeva, L.Yu., Chumarev, V.M., et. al. (2015). Thermodynamic simulation of phase formation in the Mo-Si alloys doped with scandium or neodymium. Butlerov Communications, vol. 43, no. 9, pp. 89-96.

[11] Mansurova, A.N., Larionov, A.V., Tyushnyakov, A.V. (2015). Phase composition and microstructure of the obtained under nonequilibrium crystallization conditions Mo-Si alloys. Butlerov Communications, vol. 43, no. 9, pp. 97-101.

[12] Udoeva, L.Yu., Larionov, A.V., Chumarev, V.M., et. al. (2016). The phase formation study of the hypoeutectic Mo-Si alloys, doped with REM (Sc, Y, Nd). Butlerov Communications, vol.47, no.8, pp.106-114.

[13] Udoeva, L.Yu., Chumarev, V.M., Larionov, A.V. et al. (2018). Influence of Rare Earth Elements on the Structural-Phase State of Mo–Si–X (X = Sc, Y, Nd) in situ Composites. Inorganic Materials: Applied Research, vol.9, no.2, pp.257–263.

[14] Kablov, E.N., Ospennikova, O.G., Vershkov, A.V. (2013). Rare metals and rare earth elements - materials of modern and high technologies of the future. Trudy VIAM, no.2, pp. 1-11.

[15] Smirnov, L.A., Rovnushkin, V.A., Oryshenko, A.S. (2015, 2016). Modification of steel and alloys with rare-earth elements. Metallurg, no.11, pp.50 (report 1); Metallurg, no.1, pp.41-48 (report 2).

[16] Savitsky, E.M., Baron, V.V., Efimov, Yu.V., et .al. (1962). Research of the Vanadium –Molybdenum – Silicon system. Zhurnal Neorganicheskoy Himiyi, vol.7, no. 5, pp. 1117-1125.

[17] Savitsky, E.M., Baron, V.V., Efimov, Yu.V., et .al. (1965). The solubility of some transition metals in the V3Si compound and their effect on the transition temperature of the compound to the superconducting state. Neorganicheskie materialy, vol.1, no. 3,pp.354-361.

[18] Yi, D., Li, C., Lai, Z. et al. (1998). Ternary alloying study of MoSi2. Metall and Mat Trans A, vol. 29A, no. 119-129.

[19] Fukui, T., Ueno, S., Tanaka, al. (1999). Effect of niobium or vanadium addition on the microstructure and hardness of MoSi2-Mo5Si3 eutectic alloys, J. Jpn. Inst. Met., vol. 63, no.5, pp. 613-616.

[20] Wei, F.-G., Kimura, Y., Mishima, Y. (2001). Microstructure and phase stability in MoSi2- TSi2 (T=Cr, V, Nb, Ta, Ti) pseudo-binary systems. Mater. Trans., JIM., vol. 42, no. 7, pp. 1349-1355.

[21] Maglia, F., Milanese, C., Anselmi-Tamburini, U., et. al. (2003). Self-propagating hightemperature synthesis microalloying of MoSi2 with Nb and V. J. Mater. Res, vol.18, no.8, pp. 1842-1848.

[22] Rawn, C.J., Schneibel J.H., Fu, C.L. (2005). Thermal expansion anisotropy and site occupation of the pseudo-binary molybdenum vanadium silicide Mo5Si3-V5Si3. Acta Materialia, vol.53, pp. 2431-2437.

[23] Roine. A., (2006). HSC 6.0 Chemistry. Chemical reactions and Equilibrium software with extensive thermochemical database and Flowsheet simulation. Pori: Outokumpu research Oy.

[24] Kubashevskiy, O., Olkokk, K.B. (1982). Metallurgical thermochemistry. Moscow: Metallurgiya.

[25] Massalski, T.B. (1990). Binary Alloy Phase Diagrams, 2nd ed. ASM International. Metals Park. Ohio.

[26] Materials Science International Team, MSIT®, Lebrun N., Perrot P. (2010) Molybdenum – Silicon – Vanadium. In: Effenberg G., Ilyenko S. (eds.) Refractory metal systems. Landolt-Börnstein - Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), vol 11E3. Springer, Berlin, Heidelberg

[27] Barin, I. (1989). Thermochemical Data of Pure Substances, Weinheim: VCH Verlags Gesellschaft.

[28] Barin, I. (1993). Thermochemical Data of Pure Substances, Part I, Weinheim: VCH Verlags Gesellschaft.

[29] Knacke, O., Kubaschewski, O., Hesselman, K., (1991). Thermochemical properties of inorganic substances, 2nd ed., Berlin: Springer-Verlag.

[30] O’Hare, P.A.G., Watling, K., Hope G.A. (2000). Thermodynamic properties of vanadium silicide II. Standard molar enthalpy of formation dfH∘m (298,15 K)... Journal of Chemical Thermodynamics, vol. 32, pp. 427-437

[31] Eremenko, V.N., Lukashenko, G.M., Sidorko, V.R., Kulik, O.G. (1976). Dopov. Akad. Nauk Ukr. RSR Ser. vol. A 38, pp. 365–368.

[32] Eremenko, V.N., Lukashenko, G.M., Sidorko, V.R. (1974). Dopov. Akad. Nauk Ukr. RSR Ser., vol. B 36, pp. 712–714.

[33] Eremenko, V.N., Lukashenko, G.M., Sidorko, V.R. (1975) Rev. Intl. Hautes Temp. Refract., vol. 12, 237–240.

[34] Meschel, S.V., Kleppa, O.J. (1998). J. Alloys Compd., vol. 267, pp. 128–135.

[35] Gorelkin, O.S., Mikhailikov, S.V. (1971). Zh. Fiz. Khim. vol. 45, pp. 2682–2683.

[36] Zhang, C., Wang, J., Du, Y., Zhang, W.-Q. (2007). J. Mat. Sci., vol. 42 (16), pp. 7046– 7048.