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Abstract
In this article, the authors propose an IR imaging system, supplied with an IR bundle of
ordered silver halide fibers, for the acquisition of 2D temperature field distribution in
hard-to-reach places. We assessed crosstalk between neighboring individual fibers of
the bundle, carried out calibration of the IR imaging system, and determined modelled
defects using this system. The results showed the applicability of the system for the
inspection and investigation of power engineering units.
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1. Introduction

By now, infrared (IR) thermography has become widely accepted as a nondestructive
technique of inspection and investigation for various applications in different fields,
such as metrology, biomedical diagnosis, intraoperative monitoring, etc. [1–3]. One
more possible application sphere of IR thermography is power engineering [4–6]. IR
thermography is one of the most attractive and successful techniques, which allows
detecting the object’s surface and subsurface defects remotely without harmful radi-
ation effects of other technologies (such as X-ray imaging). It also enables to study
heat fluxes of heat transfer media. This technique may be used for the monitoring
and research of heating networks, thermal power-generating equipment and other
units, as well as for the optimization of working processes in different mechanisms
and systems of this industry.

Commonly, the investigation by means of IR thermography is conducted outside,
though there are many units where the external inspection is impossible. In recent
years, the very few applications of IR thermography, concerning the investigation of
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heat field distribution of internal surfaces, have been reported. In particular, Tahiliani
et al. used a stainless steel mirror placed inside the pipe in order to view the reflected
IR radiations using an IR camera [4]. Mancaruso et al. also took IR images by means of
a 45∘ IR-mirror located in the elongated piston (in order to analyze fuels combustion in
engines) [5]. However, all the aforementioned approaches do not allow carrying out
on-field experiments in hard-to-reach places, for example, in curved internal pipes of
heat exchangers or in spaces near gas turbine blades.

To fill this gap, IR imaging systems provided with optical fiber bundles may be
used. In this article, we discuss the applicability of ordered fiber bundles made of
silver halides for in situ internal IR imaging of 2D temperature field distribution. Due
to their flexibility, great lengths, and small diameters, these bundles allow conducting
measurements in restricted spaces and in locations having no line of sight between
objects and IR camera.

2. Methods

We developed and implemented the complete technological cycle of bundle fabrica-
tion. As seen from Figure 1, the fabrication process involves the following five steps:
(1) producing raw materials by the thermal-zone crystallization-synthesis technique,
which enables to carry out both synthesis and purification simultaneously [6]; (2)
growing single crystals of silver halides using the Bridgman technique based on
directional crystallization [7]; (3) obtaining cylindrical billets by means of mechanical
treatment; (4) manufacturing polycrystalline fibers using extrusion technique [8];
(5) assembling ordered fiber bundles varying the following parameters: diameter of
individual fiber, number of individual fibers, manner of fibers arrangement, and length.

We fabricated an IR ordered bundle of AgCl0.25Br0.75 multimode single-layer fibers,
using a mechanical assembly of the fibers in a heat shrink tube. It consisted of 16
ordered fibers with the diameter of 0.525 mm and with the length of 300 mm. The
outer diameter of the bundle was 2.5 mm; each end being equipped with a connector
SMA-905.

This bundle is highly transparent in the spectral range of 2.5–20 µm without absorp-
tion windows, flexible, nontoxic, and nonhygroscopic. Its spatial resolution is 0.5 mm.
The low loss region of the bundle covers most of the radiation wavelength range of
blackbody at temperatures from –130 to +1100∘C, thus being able to transmit radiation
corresponding to these temperatures [9].
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Figure 1: Steps of fabrication process of ordered fiber bundles.

Figure 2: Schematic drawing of the first experimental setup for measuring crosstalk: 1 – CО2 laser; 2 – CCD
camera; 3 – 16-fiber bundle; 4 – AgClBr lens. Inserts: (a) radiation field distribution of CO2 laser beam; (b)
field distribution of radiation transmitted through the bundle.

3. Results

The first part of our research was measuring crosstalk between neighboring individual
fibers of the bundle using a CO2 laser (λ = 10.6 μm, CW mode, introduced power was 1
W, beam diameter was 3 mm). Firstly, we checked the uniformity of radiation distribu-
tion across the fiber bundle. For this, we used the laser beam without focusing (Figure
2). Radiation distribution was assessed by viewing images of CCD camera Spiricon
Pyrocam III. All fibers showed the uniform distribution of transmitted radiation.

Then we used an additional AgClBr lens (the focal spot of 220 μm and the focal
length of 50 mm) to focus the laser beam on the particular individual fiber, which
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Figure 3: Schematic drawing of the second experimental setup for measuring crosstalk: 1 – CО2 laser; 2 –
CCD camera; 3 – 16-fiber bundle; 4, 5 – AgClBr lenses. Inserts: (a) radiation field distribution of CO2 laser
beam without focusing; (b) the same but with focusing on certain individual fiber; (c) field distribution of
radiation transmitted through the bundle.

Figure 4: Thermal imaging setup: 1 – Peltier device, 2 – IR-mirror; 3, 5, 6 – AgClBr lenses; 4 – IR fiber bundle;
7 – thermal camera.

was surrounded by neighboring fibers from all the sides (Figure 3). 3D distribution of
transmitted radiation was gained using the same CCD camera. Using it, we estimated
the volume of Gaussian distribution of the radiation emerging from each individual
fiber, that is, the radiation volume for the main testing fiber and for neighboring ones.
The volume of small radiation peaks was summarized and divided by the total volume
of radiation peaks. It was found that less than 5% of the total power of the output
radiation leaked into neighboring fibers. This means that distortions of measured tem-
perature due to crosstalk are low. The experiment was carried out for all fibers of the
assembly. The results showed a good mutual agreement.
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Figure 5: Calibration curves: 1 – line of equal temperature values; 2 – measured temperature values while
the bundle temperature equal to room temperature; 3 – the same, but the bundle end temperature equal
to 60∘C; 4 – the same, but the bundle end temperature equal to 70∘C.

Figure 6: Photo of the IR fiber bundle end face (a) and thermal images transmitted through the IR imaging
system supplied with the bundle: image of modelled extended defect (b), image of a Peltier device (c),
image of a modelled linear defect (d).

The second part of our research was designing and calibration of a setup for obtain-
ing thermal images. We propose an IR thermographic system composed of our fiber
bundle, three AgClBr lenses, a thermal camera FLIR E30bx, and a 45∘ IR-mirror made
of polished titanium (Figure 4).

To estimate the influence of total optical losses of our thermal imaging system on
the measured temperature, we carried out calibration (Figure 5). Curve 1 in Figure
5 represents a line of equal temperature values. Curve 2 depicts the first regarded
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case, when temperature of the bundle was constant and equal to room temperature.
For the next two cases, the proximal end of the bundle was heated up to 60 and
70∘C (curves 3 and 4, respectively). As seen from the graph, total optical losses of
the system distort substantially measured temperature. Nevertheless, the calibration
experiment confirmed that the dependence of detected temperature on the heating
of the proximal end could be approximated linearly. Therefore, we will be able to
readily exclude temperature distortions bymeans of appropriate software. Tominimize
distortions caused by heating, one can use thermal insulation or single-mode individual
fibers. To minimize distortions caused by reflection of radiation, one can use anti-
reflective coatings for lenses and bundle face ends.

As mentioned earlier, our bundle comprises multimode individual fibers. When the
bundle’s material is heated, it starts behaving like an array of point radiation sources,
that is, it emits radiation in all directions. If this intrinsic radiation has the angle of
incidence greater than or equal to the critical one (it is more than 20 degrees for
multimode fibers), the radiation is summarized up with radiation from the research
object, which causes additional distortion of the measured temperature. The great
contribution of such additional intrinsic radiation to the measured temperature was
reported previously [10]. To diminish the temperature distortion, it makes sense to
consider the application of single-mode individual fibers.

Using single-mode fibers for the bundle, we will have the critical angle, which does
not exceed 7 degrees. In this case, the extent of additional temperature distortions
will be significantly reduced, because less part of the radiation from heated bundle
particles will reach the thermal camera. Consequently, we will be able to determine
temperature more accurately. It is important to maintain the distal end of the bundle
(the length about 20–30 cm) at room temperature, because that additional intrinsic
radiation has to overcome certain distance to be completely attenuated.

The last part of our research was testing the IR imaging system. For this, two exper-
iments in quasi steady-state conditions were carried out. The setup was as shown
in Figure 4. The thermal camera was positioned at an angle of 90∘ and a distance of
0.7 m from research objects. The appearance of an end face of the IR fiber bundle is
shown in Figure 6(a). As a heated wall of power engineering unit, we used a Peltier
device with the temperature of +100∘C, emissivity of 0.95. From Figure 6(c) it can be
seen that obtained thermal image of the device represents quite uniform distribution
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of temperature (about +38∘C). According to the following equation, we can calculate
the percentage of real object’s temperature detected by the thermal camera n:

𝑛 = 𝑇𝑚𝑒𝑎𝑠 − 𝑇𝑟𝑜𝑜𝑚
𝑇𝑟𝑒𝑎𝑙 − 𝑇𝑟𝑜𝑜𝑚

⋅ 100%, (1)

where T𝑚𝑒𝑎𝑠 – the measured temperature, T𝑟𝑒𝑎𝑙 – the real temperature of object, T𝑟𝑜𝑜𝑚 –
room temperature. For the proposed IR imaging system n = 18%.

As an extended defect, we used a rubber plate (emissivity of 0.94) at room temper-
ature on the background of the heated Peltier device (Figure 6(b)). Obtained thermal
distribution was uniform and the detected temperature was approximately 31∘C that is
related to the heating effect of the background. To imitate a linear defect of the heated
wall (a crack), we used a blackened stainless steel wire (emissivity of 0.95) of 1 mm in
diameter and the same heated Peltier device as a unit’s wall. Obtained thermal image
of the modeled crack shows rather good detection ability of the system (Figure 6(d)).

4. Conclusion

In the present study, we proposed the scheme of an IR thermographic system provided
with IR ordered fiber bundle of silver halides. It was revealed, that our system with
proper calibration enables online temperature monitoring and detecting defects of
power engineering units. We assessed crosstalk between neighboring individual fibers
of the bundle. It was found, that they did not exceed 5%.We also carried out calibration
of the IR imaging system in different operating conditions, taking into account the total
optical losses of the system. The use of single-mode individual fibers for the bundle
instead of multi-mode ones as well as thermal insulation can help to improve the
system owing to reducing temperature distortions. Anti-reflective coatings would be
also useful. Using the proposed system, we successfully determined modeled defects
located at an angle of 90∘ with respect to the thermal camera. Our future task is to
optimize the design of the system, for example, fabricate miniature IR mirror, which
may be consolidated with the bundle forming a sealed connection, and develop the
embedded system of lenses. It is also necessary to increase the spatial resolution of
the bundle, its length, and maximum scan area.
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