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Abstract
Utilizing solar thermochemical reactor to convert exhaust gas into high-quality clean
fuel by concentrated solar radiation is a valuable way to develop renewable energy.
Due to the high working temperature, the issue of reactor damage occurs easily as
found during the course of the experiment. In order to find out the reasons, some
thermal stress simulation and analysis of solar thermochemical reactor were made
in this article. The areas where thermal stress is concentrated were investigated in
the contour simulation results. Based on the analysis, some suggestions for structural
optimization for further research were formulated.
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1. Introduction

Due to the increasing demand for clean energy, the application of solar energy has
become an indispensable form of alternative energy use in modern society [1, 2].
Nowadays, a solar-driven thermochemical reaction system using concentrated solar
radiation for hydrogen and syngas (mainly H2 and CO) production is considered to
be an effective alternative to traditional fossil fuels to solve energy problems and
climate change, which have attracted tremendous interests worldwide [3, 4]. The
Computational Fluid Dynamics (CFD) simulation offers the possibility to investigate
operating conditions of the solar thermochemical reactor [5]. Moller et al. [6] devel-
oped a one-dimensional unsteady and steady-state heat transfer model for a solar
reactor of simple construction to analyze the thermal decomposition of ZnO. Soon
afterward, Moller and Palumbo [7] have designed a cylindrical solar chemical reactor
taking advantage of inert gas to keep the reactor’s window clean of Zn and ZnO. A
Monte-Carlo ray-tracing method coupled with optical properties was developed by
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Shuai et al. [8] to predict radiative properties of solar reactor with quartz window.
Costandy et al. [9] developed different struts of spherical and cylindrical solar reactor
to investigate the effect of reactor geometry on the temperature distribution and heat
loss inside the reactors. Thomey et al. [10] have developed a multi-chamber solar
porous media reactor design for the decomposition of sulphuric acid. Since the metal
oxide is being regenerated during the process, Konstandopoulos and Agrofiotis [11]
have designed a two-reactor ‘Conti-reactor’ chamber to solve the intermittent problem
relative to hydrogen production.

In reaction process, the concentrated solar energy is transmitted into the reactor
inner cavity through a transparent quartz glass window installed on the front surface
of reactor, which provides the necessary energy for reaction process. However, the
processes of cracking and reformingwould not happen until the operating temperature
reaches at least 1000 K [12]. During the experiment, we have found a significant prob-
lem that the quartz glass windowmight break due to high heat flux. In the meanwhile,
the Al2O3 ceramic insulation cavity also has a possibility of fragmentation as a result
of thermal expansion.

In view of the aforementioned problems, the thermal stress of solar thermochemical
reactor using concentrated solar radiation is investigated in this article to find out the
broken conditions of solar thermochemical reactor and provide useful references for
further study.

2. Methods

2.1. Solar radiation convergence model

Figure 1 shows the process of light convergence from the solar simulator to the solar
thermochemical reactor under ideal conditions. This process including model build-
ing and numerical simulation was finished by the TracePro70 software with Monte
Carlo ray tracing (MCRT). Based on the current experimental conditions and simulation
requirements, the power of Xe lamp is set to be 6 kW. The first focal length c1 and
the second one c2 are 100 and 1000 mm, respectively, so that we can obtain the
eccentricity of ellipse e, the value of which is 0.818. For convenient calculation, the
solar thermochemical reactor is substituted with a circular incident surface, so that we
can show the incident heat flux more clearly.
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Figure 1: Schematic diagram of light convergence process.

2.2. Solar thermochemical reactor model

Figure 2 indicates the structure of solar thermochemical reactor. As shown in this
figure, the whole reactor is made of Al2O3 ceramic thermal insulation for protecting
the reactor and reducing heat loss during the progress of thermochemical reactions.
The concentrated solar energy will be transmitted into the reactor inner cavity through
the transparent quartz glass window installed on the front surface of the reactor, and
the reactant gas will be led into the reactor inner cavity by four opposite inlets in
the meanwhile, so that the oxidation-reduction reaction occurs under the action of
catalyst in the lumen. In order to obtain the reaction temperature, two thermocouples
are installed in the light incident area and reaction area, respectively.

The heat transfer and fluid flow characteristics of solar thermochemical reactor
were obtained by the FLUENT software. In order to simulate the incident radiation
more realistically, DO model was selected to figure out the radiation heat transfer.
Considering the small import fluid velocity of 0.005 m/s, the laminar flow model was
chosen to calculate flow characteristics. The absorption and scattering coefficients of
quartzwindowwere ignored due to high transmission. The incident heat flux calculated
by TracePro70 software is used as the thermal boundary condition for the heat transfer
and flow simulation. The other boundary conditions are given as follows:

Gas inlet: 𝑇f = 300 K

Outside wall: ℎ = 5 W/(m2 ⋅ K) 𝑇air=300 K
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Figure 2: Structure diagram of solar thermochemical reactor.

Outlet: 𝜕𝑇f
𝜕𝑥 = 𝜕𝑇f

𝜕𝑦 = 0
Due to the high working temperature environment, the thermal capacity of air is

defined as [13]:

𝑐p=1.06 × 103 − 0.449𝑇f + 1.14 × 10-3𝑇 2
f − 8 × 10-7𝑇 3

f + 1.93 × 10-10𝑇 4
f (1)

The conductivity is [13]:

𝜆=-3.93 × 103 + 1.02 × 10-4𝑇f − 4.86 × 10-8𝑇 2
f + 1.52 × 10-11𝑇 3

f (2)

Moreover, the thermal stress analysis of solar thermochemical reactor was accom-
plished by ANSYS Mechanical APDL 16.0 software after obtaining the results of heat
transfer and fluid flow characteristics. Besides, the other physical parameters for sim-
ulation are given in Table 1.

T 1: Thermal–physical and structural properties of materials [14–17].

Materials ρ
(kg/m3)

c𝑝 ( J/(kg K)) k𝑐 (W/(m K)) E (GPa) α
(×10-
6/∘𝙲)

ν

Al2O3 3960 -136.09 + 4.44T - 2.87 ×
10-3 T2 +3.88 × 10-6 T3

35.25 - 0.035T + 1.34 ×
10-5 T2

318 5.6 0.22

Quartz
(SiO2)

2200 0.966 2.09 70 0.5 0.17
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3. Results

3.1. Incident heat flux of reactor

Figure 3 indicates the contour and x-axis energy distribution of incident heat flux on
the quartz window front surface calculated by TracePro70 software, respectively. As
shown in this figure, the spots at the center present several perfect concentric circles,
which indicates that the amount of the light used in the simulation with MCRT is
sufficient for the accuracy. According to the heat flux distribution data, a Gaussian-
based energy density formula can be fitted by OriginPro8 software as follow format:

𝑞w = 𝑞0 + A × exp [−0.5 × (
𝑥
𝜔)

2
] . (3)

When the luminous flux is set to be 6 kW, the aforementioned formula can be
expressed as:

𝑞w = −32482.3 + 461347.9 × exp [−0.5 × (
𝑥

0.00528)
2
] . (4)

According to the fitting result, the value of R-Square is 0.99986, which is accurate
enough for the simulation.

Figure 3: Contour (left) and x-axis energy distribution (right) of incident heat flux.

3.2. Heat transfer and flow characteristics

The analysis of heat transfer and fluid flow characteristics of solar thermochemical
reactor was finished by Fluent software, and the incident heat flux formula was added
by Users-Defined Functions (UDFs). Grid independence tests have been carried out
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before the calculation. Figure 4 shows the temperature and velocity distribution con-
tours of solar thermochemical reactor, respectively. As indicated in Figure 4, the inci-
dent radiation mainly focused on the areas near aperture due to the effect of light
convergence.

Figure 4: Temperature and velocity distribution contours of solar themochemical reactor.

3.3. Analysis of thermal stress

This section will discuss the thermal stress of quartz window and Al2O3 ceramics ther-
mal insulation, respectively. To simplify the calculation, the way to add displacement
load was adopted in this article. Figure 5 indicates the von Mises stress of quartz
window. Note that only the edge portion of the quartz window was loaded, because
only this portion is connected to the fastener. As shown in this figure, the maximum
stress appears in the junction of the load portion and free portion, followed by the
central area. When the thermal stress reaches 128 MPa, the quartz window will be
broken, so it is safe under the current conditions.

The result of von Mises stress distribution of Al2O3 ceramic thermal insulation is
shown in Figure 6. It can be observed that most of the thermal stress is concentrated
on the front of the reactor, especially in the incident radiation areas. Obviously, the
maximum stress of 12.5 MPa occurs in the middle of the gas inlet and thermocou-
ple socket. Due to the smallest thickness in this part, it is more likely to break. This
phenomenon was also observed in previous experiment. Thus, it is recommended
to avoid the situation, where two holes are too close to each other. Moreover, the
edge of radiation entrance, as well as the vicinity of the aperture, is also the region of
stress concentration. Although the compressive strength under ideal conditions is 850
MPa, the ceramics still can be broken because of the high temperature environment,
excessive local concentration thermal stress, etc.
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Figure 5: Von Mises stress distribution of quartz window.

Figure 6: Von Mises stress distribution of Al2O3 ceramics thermal insulation.

4. Conclusion

According to the simulation results, the incident heat flux on the front surface of solar
thermochemical reactor has a symmetrical Gaussian distribution, which can be pro-
grammed as heat boundary condition into the Fluent software by UDFs. Based on the
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analysis of thermal stress, it is recommended to increase the distance between gas
inlet and thermocouple socket to prevent stress concentration. Besides, the sharp edge
of ceramics is also one of the places that are prone to thermal stress.
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