The Evolution Study Of 6-Cysteine Family Member Protein of Plasmodium sp. As a Potential Drug Candidate Against Malaria Infection

Abstract

The increase of current antimalarial drug resistance was reported and lead to the greatest threats to malaria control; therefore, new methods should be applied to encounter this problem. Although the protein evolution study of  Plasmodium may contain valuable information in finding a  new antimalarial drug candidate,  the cross-species antimalaria drug cannot be made because there is no sufficient information regarding the protein evolution between human-infecting and non- infectious Plasmodium. In this study, data mining from PlasmoDB discovers several proteins shared by Plasmodium where some of them include in a 6-Cysteine protein family. Previous studies revealed that 3 of 6-Cysteine family members (P41, P48/45, and P230) could be used as a vaccine candidate. From this information, the evolution properties and the characteristics of these proteins were further analyzed. Protein sequences of 6-Cysteine protein family members were retrieved from plasmoDB  and the GenBank. Maximum likelihood phylogenetic tree and time trees were then constructed by using MEGAX, protein domain analysis was done by using InterPro, and all tertiary structures of these proteins were predicted by using PHYRE2. Phylogenetic tree and time tree analysis showed that the human-infecting and the non-infectious Plasmodium have a different cluster and evolutionary rates. Furthermore, several domains that can be used vaccine targets were found in P41, P48/45, and P230, such as transmembrane, signal peptide, and a coiled-coil domain. Tertiary structure prediction also revealed a different characteristic of these proteins. Thus, our findings provide valuable information to support the development of the cross-species antimalaria vaccine using 6-Cysteine protein family members.


 


Keywords: 6-Cysteine, drug target, protein domain, protein evolution, tertiary structure, Plasmodium


 

References
[1] WHO. (2019). WORLD MALARIA REPORT, 2018.


[2] Minister of Health Indonesia. (2018). Laporan Nasional Riskesdas 2018.


[3] Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and Disease. Cell,167(3), 610-624. doi:10.1016/j.cell.2016.07.055


[4] Su, X., Lane, K. D., Xia, L., Sá, J. M., & Wellems, T. E. (2019). Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clinical Microbiology Reviews,32(4). doi:10.1128/cmr.00019-19


[5] Van der Pluijm RW, Imwong M, Chau NH, et al. (2019).Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis 2019. doi: 10.1016/S1473-3099(19)30391-3.


[6] Bakhiet, A. M., Abdelraheem, M. H., Kheir, A., Omer, S., Gismelseed, et al. (2019). Evolution of Plasmodium falciparum drug resistance genes following artemisinin combination therapy in Sudan. Transactions of The Royal Society of Tropical Medicine and Hygiene. doi:10.1093/trstmh/trz059


[7] Arredondo, S. A., & Kappe, S. H. (2017). The s48/45 six-cysteine proteins: Mediators of interaction throughout the Plasmodium life cycle. International Journal for Parasitology,47(7), 409-423. doi:10.1016/j.ijpara.2016.10.002


[8] EBI. (n.d.). 6-Cysteine (6-Cys) domain. Retrieved August 5, 2019, from https://www.ebi.ac.uk/interpro/ beta/entry/InterPro/IPR010884/


[9] Ahmed, M. A., Chu, K., & Quan, F. (2018). The Plasmodium knowlesi Pk41 surface protein diversity, natural selection, subpopulation, and geographical clustering: A 6-cysteine protein family member. PeerJ,6. doi:10.7717/peerj.6141


[10] Srisutham, S., Saralamba, N., Sriprawat, K., Mayxay, M., Smithuis, F., Nosten, F.,... Imwong, M. (2018). Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries. Malaria Journal,17(1). doi:10.1186/s12936-018-2176-x


[11] Macdonald, N. J., Nguyen, V., Shimp, R., Reiter, K., Herrera, R., Burkhardt, M.,... Narum, D. L. (2016). Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the plasmodium falciparum sexual Stage Protein Pfs230. Journal of Biological Chemistry,291(38), 19913- 19922. doi:10.1074/jbc.m116.732305


[12] Aurrecoechea, C., Bertelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B.,... Wang, H. (2009). PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Research,37(Database). doi:10.1093/nar/gkn814


[13] Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research,32(5), 1792-1797. doi:10.1093/nar/gkh340


[14] Hall, B. G. (2013). Building Phylogenetic Trees from Molecular Data with MEGA. Molecular Biology and Evolution,30(5), 1229-1235. doi:10.1093/molbev/mst012


[15] Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 8(3), 275–282. doi: 10.1093/bioinformatics/8.3.275


[16] Mello, B. (2018). Estimating TimeTrees with MEGA and the TimeTree Resource. Molecular Biology and Evolution, 35(9), 2334–2342. doi: 10.1093/molbev/msy133


[17] Hedges, S. B., Marin, J., Suleski, M., Paymer, M., & Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution, 32(4), 835–845. https://doi.org/10. 1093/molbev/msv037


[18] Southan, C. (2000). InterPro (The Integrated Resource of Protein Domains and Functional Sites). Yeast,1(4), 327-334. doi:10.1002/1097-0061(200012)17:43.0.co;2-k


[19] Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction, and analysis. Nature Protocols,10(6), 845-858. doi:10.1038/nprot.2015.053


[20] Delano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82-92.


[21] Cornejo, O. E., & Escalante, A. A. (2006). The origin and age of Plasmodium vivax. Trends in Parasitology,22(12), 558-563. doi:10.1016/j.pt.2006.09.007


[22] Prugnolle, F., Ollomo, B., Durand, P., Yalcindag, E., Arnathau, C., Elguero, E., … Renaud, F. (2011). African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains. Proceedings of the National Academy of Sciences, 108(29), 11948–11953. doi: 10.1073/pnas.1109368108


[23] Burdukiewicz, M., Sobczyk, P., Chilimoniuk, J., Gagat, P., & Mackiewicz, P. (2018). Prediction of Signal Peptides in Proteins from Malaria Parasites. International Journal of Molecular Sciences,19(12), 3709. doi:10.3390/ijms19123709


[24] Céspedes, N., Connie S. N. Li Wai Suen, Koepfli, C., França, C. T., Felger, I., Nebie, I.,... Herrera, S. (2017). Natural immune response to Plasmodium vivax alpha-helical coiled-coil protein motifs and its association with the risk of P. vivax malaria. Plos One,12(6). doi:10.1371/journal.pone.0179863


[25] G.R. Coatney, W.E. Collins, M. Warren, et al. Plasmodium knowlesi. The primate malarias, U.S. Government Printing Office, Washington (1971), pp. 317-333


[26] Kovjazin, R., Volovitz, I., Daon, Y., Vider-Shalit, T., Azran, R., Tsaban, L., … Louzoun, Y. (2011). Signal peptides and transmembrane regions are broadly immunogenic and have high CD8 T cell epitope densities: Implications for vaccine development. Molecular Immunology, 48(8), 1009–1018. doi: 10.1016/j.molimm.2011.01.006


[27] Cai, M., Arredondo, S., Clore, M., Miller, L., Takayama, Y., Macdonald, N.,... Aravind, L. (2012). Structure of the Plasmodium 6-cysteine s48/45 Domain. PNAS. doi:10.2210/pdb2loe/pdb