Manipulation by Photoelectron Currents for the Generation of Terahertz Light Pulses

Authors

  • S V Popruzhenko
  • V A Tulsky

DOI:

https://doi.org/10.18502/keg.v3i6.3014

Abstract

Using the strong field approximation we calculate photoelectron momentum distributions generated in the interaction of low-frequency two-color laser fields with atomic gases. The field consists of an infrared linearly or circularly polarized pulse of intensity close to 1014W/cm2 and its second linearly polarized harmonic whose intensity does not exceed 10% of the fundamental. Our calculations aim to find a field configuration, which maximizes the photoelectron current left after the interaction. Such net currents result from asymmetries of photoelectron distributions in non-monochromatic coherent fields with fixed phases between the frequency components. We show that combining a circularly polarized intense pulse with a linearly polarized pulse of the second harmonic one could approach the highest possible asymmetry of the photoelectron distribution and therefore the highest value of the net current.

 

 

Keywords: terahertz radiation, strong-field ionization, photoelectron currents, strong field approximation

References

Cook, D. J. and Hochstrasser,R. M. (2000). Intense terahertz pulses by four-wave rectification in air. Optics Letters, vol. 25, p. 1210.

Clough, B., Dai, J., and Zhang, X.-C. (2012). Laser air photonics: beyond the terahertz gap. Materialstoday, vol. 15, p. 50.

Kim, K. Y., Glownia, J. H., Taylor, A. J., et al. (2007). Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, vol. 15, p. 4577.

Oh, T. I., You, Y. S., Jhajj, N., et al. (2013). Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation. Applied Physics Letters, vol. 102, p. 201113.

Kampfrath, T., Sell, A., Klatt, G., et al. (2011). Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, vol. 5, p. 31.

Fleischer, S., Zhou, Y., Field, R. W., et al. (2011). Molecular orientation and alignment by intense single-cycle THz pulses. Physical Review Letters, vol. 107, p. 163603.

Lu, M., Shen, J., Li, N., et al. (2006). Detection and identification of illicit drugs using terahertz imaging. Journal of Applied Physics, vol. 100, p. 103104.

Daigle, J. F., Théberge, F., Henriksson, M., et al. (2012). Remote THz generation from two-color filamentation: long distance dependence. Optics Express, vol. 20, p. 6825.

Kotelnikov, I. A., Borodin, A. V., Shkurinov, A. P. (2011). Journal of Experimental and Theoretical Physics, vol. 139, p. 1081.

You, Y. S., Oh, T. I., and Kim, K. Y. (2012). Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Physical Review Letters, vol. 109, p. 183902.

Bagulov, D. S., Kotelnikov, I. A. (2013). Journal of Experimental and Theoretical Physics, vol. 143, p. 26.

Johnson, L. A., Palastro, J. P., Antonsen, T. M., et al. (2013). THz generation by optical Cherenkov emission from ionizing two-color laser pulses. Physical Review A, vol. 88, p. 063804.

Vvedenskii, N. V., Korytin, A. I., Kostin, V. A., et al. (2014). Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse. Physical Review Letters, vol. 112, p. 055004.

S.V. Popruzhenko, V.A. Tulsky. (2015). Control of terahertz photoelectron currents generated by intense two-color laser radiation interacting with atoms. Physical Review A, vol. 92, p. 033414.

Meng, C., Chen, W., Wang, X., et al. (2016). Applied Physics Letters, vol. 109, p. 131105.

Keldysh, L. V. (1965). Ionization in the field of a strong electromagnetic wave. Soviet Physics—JETP, vol. 20, p. 1307.

Faisal, F. H. M. (1973). Journal of Physics B, vol. 6, p. L89.

Downloads

Published

2018-10-08

How to Cite

Popruzhenko, S. V., & Tulsky, V. A. (2018). Manipulation by Photoelectron Currents for the Generation of Terahertz Light Pulses. KnE Engineering, 3(6), 351–358. https://doi.org/10.18502/keg.v3i6.3014