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Abstract

Degradation of Direct Yellow-27 has been investigated using irradiation process of UV
light and solar by adding of N-Doped TiO2 catalyst. The aims of this research were to
explore the optimum condition of N-Doped TiO2 catalyst, and to test the best process
of irradiation that used to degrade of Direct Yellow-27. The absorbances of sample
were measured by using UV-Vis Spectrophotometer (λ=300-800 nm). The conditions
of before and after degradation were quantified by using Ion Chromatography. Direct
Yellow-27 was successful degradated using the irradiation procces of UV light (10 watt,
λ=365 nm) and solar (28.000 lux) with and without using N-Doped TiO2 catalyst. The
result of this study showed that solar irradiation was better than UV light in process
of degradation. The degradation process of direct Yellow-27 was destitute N-Doped
TiO2 catalyst 8,72 %, while by adding of N-Doped TiO2 catalyst 52,86%. The catalyst
optimummass in this study was 10 mg. The liquid Chromatography analysis represented
the broadening of peak that notices Diret Yellow-27 was successful degradated.

Keywords: Direct Yellow-27, UV-light, Solar irradiation, N-Doped TiO2, Photocatalyst,
liquid Chromatographic

1. Introduction

The waste of Silungkang tenun songket dye [1, 2], West Sumatra as Direct Yellow-27

is a non-biodegradle compound that consists azo. That carcinogenic subtance could

cause distrubtion in human body such as harmfull of kidney, cancer [3–5], and tumor

[6]. Direct Yellow-27 is a residu from immersion and dyeing processes, and it requires
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advanced treatment, so that dye does not enter to river that is used by society. Without

waste treatment, there will be a potential damage to river flow so it can not be used for

mankind consumption [6, 7].

Several methods were used in dye treatment such us biodegradation [8], adsorption

[9], coagulation, and reverse osmosis but these methods were not active for immersion

waste cleaning [9]. The method mentioned above was non destructive. These methods

only change the waste into another phase so it still has a negative impacts such as

unefficiency, non-biodegradradation, carcinogenic [10–13].

In other ways there are more efficient and promising methods to resolve dye textiles

such us photolysis [5], ozonolysis [4, 11], solar irradiation and sonolysis [14, 15] with and

without catalyst addition where it decomposes organic dye coumpont into the simplest

compount using photon and catalyst [10, 11, 16].

The Previous research were used un-doped TiO2 catalyst, whereas TiO2 catalyst has

broader band gab 3,2 and 4.0 ev for anatase and rutil, prespectively [17, 18]. These

conditons were active in iradiation UV λ < 380. Due to this situation, TiO2 Catalyst has

no ability for absorbtion at UV-Light range so the catalyst were modified the chemistry

structure for gaining of best catalyst. One of modification technique in TiO2 alteration

is a doping using metal and non metal element so it can used in lower energy. In that

condition, the performance of catalyst occurs a shifting of spectrum adsorption from

UV light into Visible light. Nitrogen is the most effective dopant to be used on TiO2

catalysts because it has a small ionization energy, its size is not much different from the

oxygen element and can also narrow the gap energy so that the potential is enough to

be used to synthesis of N- Doped TiO2 [3] catalyst which is expected to be active in the

light region looks and efficiently uses solar irradiation as a light source and breaks the

chain of compounds in Direct azo dye into simple compounds that are not dangerous

if it is channeled into the water [16, 17, 19, 20].

Previous research has been done regarding dye degradation. Such as Direct Red-

23 and Direct Violet Color Degradation through Ozonolysis Process and UV Light

Photolysis and solar irradiation Using N-Doped TiO2 Catalyst with the addition of 20

mg N-Doped TiO2 catalyst Direct Red-23 can be degraded 55.44% while Direct Violet

can be degraded by 50% [11]. Showing good results, however, no one has used Diret

Yellow-27 [7] dyestuff. In this study, direct yellow dye degradation was carried out by

utilizing UV lamps and solar irradiatin.
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2. Materials and Methods

2.1. Study area

This research was conducted in Laboratorium of Applied Analytical-Chemistry, Depart-

ment of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University.

2.2. Equipments

Spectrophotometer UV-Vis (S.1000 Secoman Sarcelles, Franch), UV-lamp (Germicidal CE

G 13 Base BFC11004, λ=365 nm, 10 Watt), box iradiasi, sentrifuse 10.000 rpm, petridish,

dan glasess equipments.

2.3. Materials

Direct Yellow-27 dye (C25H20N4Na2O9S3, Mr = 662,62 g/mol) (Fig. 1) from silungkang

Industry, distiled water, N-doped TiO2, capillary column, silica C18, methanol, acetonitrile,

Politetrafluoroetilen. All other reagents were of analytical grade. ADirect Yellow-27 [7, 21]

stock solution of 2 g L-1 was prepared by dissolving an accurately weighed amount of

Direct Yellow-27 in distilled deionized water. Test solutions of Direct Yellow-27 were

prepared by diluting the stock solution with distilled deionized water. In this work, the

initial Direct Yellow-27 concentration (Co) varied from 7 to 293 mg L-1, and the pH of

each solution was adjusted to the desired value using 0.1 M HCl or NaOH solutions [22].

Figure 1: Structure of Direct Yellow-27.
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2.4. Prepare and measurement of dye absorption spectra

0.015 gr sample were soluted into 250 mL aquadest to get 40 mg/L solution, next Direct

Yellow-27 solution were measured for the absorbance using UV-Vis spektrophotometer

(λ 300-800 nm). The absorbance data were taken at maximum absorbance λ.

2.5. Degradation of dye by UV-Light and solar irradiation
un catalyst

Direct Yellow-27 solution were poured into 5 diferent petridish. The solution were

degraded with UV-Light and solar irradiation in 30 minutes interval. Degredated solu-

tions were measured for absorbance by UV-Vis spektrophotometer.

The degradation percentage of dye from solution at different time interval and

condition is show as:

% Deg 𝐴𝑜 − 𝐴𝑡
𝐴𝑜 × 100% (1)

Where Ao is the initial absorbance of Direct Yellow-27 and At is absorbance of Direct

Yellow-27 at different condition. The effect of N-doped TiO2 amount on glass substrate

and irradiation time on photodegradation of Direct Yellow-27 was tested.

2.6. The effects of N-doped TiO2 catalyst variation on
dye degradation for optimum condition using
UV-light and solar irradition

Direct yellow-27 solution were poured into 5 diferent petridish, furthemore 5-25 mg

catalyst the solution were added and degraded with UV-Light and solar irradiation

during 2 hours. Result of degradation was centrifuged at a speed of 10.000 rpm to

separate the catalyt. The absorbance of solution that has been degraded measured bg

UV-Vis spektrophotometer.

2.7. Prepare a column C.18 liquid chromatography

The separation column was prepared using a fused silica capillary tube with a length

of 100 mm with a size of 0.32 mm I.D and 0.45 mm O.D. stationary phase material is

inserted into the capillary column by dissolving C18 using methanol. Then testing the
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ability of the column using the acetonitrile mobile phase. The chromatographic system

circuit scheme used in the study can be seen in Fig. 2.

Figure 2: Schematic of Chromatography Column.

3. Result and Discussion

3.1. Determination of the optimum weight of N-doped TiO2
catalyst in the degradation process

The solution was measured by using UV-Vis Spectrophotometer at a wavelength range

of 300-800 nm, obtained a maximum absorption peak at a wavelength of 398 nm and

absorbance of 0.820 abs. Catalysts has an important role in degradation, because they

produce hydroxyl radicals. The optimum weight of N-doped TiO2 catalyst can be seen

in Fig. 3, the curve that showed relationship between percent degradation with the

weight of N-doped TiO2 catalyst.

The percent degradation of Direct Yellow-27 solution increased increasing number

of N-doped TiO2 is shown in Fig. 3. Because the increasing amount of catalyst causes

the active side of the surface to increase so that the number of photons and molecules

of dyes absorbed [23].

It can be seen in the optimum weight curve of N-doped TiO2 catalyst, which was 10

mg where it can degrade by 53.13% After 120 minutes. But at the addition of a catalyst

weight of more than 10 mg, the percent degradation will decrease. This is due to the

increase in the amount of catalyst so that the turbidity of the solution increases so as

to reduce the light that is transmitted to the degradation process [3, 24, 25].
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Figure 3: The correlation curve between N-doped TiO2 catalyst weight and degradation percentage from
Direct Yellow-27.

A semiconductor can undergo a photoinduced process upon irradiation. This will

consist of the promotion of one electron from the VB to the CB, leaving a hole in the

valence band and thus creating the photogenerated e−/h+ pair [18, 26, 27]. This process

takes place when light with wave- length within the energy range of the semiconductor

bandgap interacts with the solid. After that, charge carriers can migrate from the bulk

[28, 29] to the surface of thematerial. When this occurs in an aqueousmedium, dissolved

oxygen can be adsorbed [30,30–32] on the surface of the photocatalyst and reduced

by elec- trons, giving rise to superoxide radical anions, O2− (Eq. 1), while holes can

oxidize water as well as hydroxyl anions, producing hydroxyl radicals, HO (Eqs. 2 and 3,

respectively). Furthermore, O2− can form hydroperoxyl radicals, HOO, by protonation

(Eq. 4). These oxidant radical species allow the mineralization of the pollutants (Eq.

5). Nevertheless, “scavenging” reactions can also take place (Eqs. 6-8), including the

recombination of charges (Eq. 9), which reduces the efficiency of the photocatalyst.

(O2)ads + e− → O•−
2 (2)

H2O + h+ → HO• + H+ (3)

OH- + h+ → HO• (4)

O•−
2 + H+ → HOO• (5)

HO•/ HOO•/ O•−
2 + P → Oxidized Intermediates → CO2 + H2O (6)
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HO• + H+ + e− → H2O (7)

HOO• + HOO• → H2O2 + O2 (8)

HOO• + H+ + e− → H2O2 (9)

e− + h+ → hv (heat) (10)

Where P: Pollutant [33]

3.2. Effect of UV-Light irradiation time on the percentage of degra-
dation without addition of catalyst

Direct Yellow-27 irradiated with a 30 minute interval using UV light λ = 365 nm. The

effect of photolysis time on the percentage of degradation without addition of catalyst

can be seen in Fig. 4.

Figure 4: Effect of irradiation time on the percentage of Direct Yellow-27 degradation without catalyst.

From Fig. 4, it can be seen that the change in percentage of Direct Yellow-27 degra-

dation increased with increasing irradiation time, because the longer the irradiation

time, the more compounds that are broken down by the energy of UV light in the

degradation process form OH. Where the biggest percentage of degradation lies in the

irradiation for 120 minutes which is 19.32% [34].
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3.3. Comparison of percentage of non-catalyst degradation and
addition of N-doped TiO2 catalyst

Percent ratio of Direct Yellow-27 degradation between without catalyst and by adding

10 mg of N-doped TiO2 catalyst photolysis with UV lamp λ = 365 and increasing

degradation time can be seen in Fig. 5.

Figure 5: The effect of time on the percentage of Direct Yellow-27 degradation with the addition of N-doped
TiO2 catalyst.

It can be seen from Fig. 5 that the longer the irradiation time, the more Direct Yellow-

27 dyes were degraded. This is because the longer the irradiation time, the more UV

light is affected by the N-doped TiO2 catalyst, so that more OH is produced. Being able

to degrade Direct Yellow-27 increased by 40.77%.

From the data it can be concluded that the percentage of Direct Yellow-27 degrada-

tion with the addition of catalyst is better than without catalyst due to excitation, due to

UV light which affects N-doped TiO2 so that the electrons in the catalyst are excited from

the valence band (vb) to the conduction band (cb) generate holes (hvb+) in the valence

band and in the conduction band (ecb−) Then the electrons in the conduction band

(ecb−) react with oxygen to produce superoxide ions (O−
2 ), then react with water to form

OH which will break the bond dyestuffs and produce simpler compounds [23, 34, 35].

3.4. Effect of irradiation time on the percentage of degradation
without the addition of catalyst

Solar irradiation Direct Yellow-27 with 30 minute intervals.
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Figure 6: The effect of irradiation time on the percentage of degradation without the addition of catalyst.

From Fig. 6 it can be seen that Direct Yellow-27 dye substance was degraded by the

sun irradiation method of 8.72% for 120 minutes when the dye solution was subjected

to light, splitting water molecules produces OH, which can break the bond of organic

compounds [4, 5].

3.5. Comparison of percentage of non-catalyst degradation and
addition of N-doped TiO2 catalyst

Comparison of percent degradation of Direct Yellow-27 between without and addition

of N-doped TiO2 catalyst with irradiation time interval 30 minutes.

From Fig. 7 it can be seen that Direct Yellow-27 dyestuff was degraded by the sun

irradiation method, but when compared with no catalyst, the percent degradation was

greater when adding catalyst. Because of the ability to degrade sunlight energy with a

more active catalyst and greater percent degradation [36]. The sun irradiation method

was able to degrade Direct Yellow-27 by 52.86% for 120 minutes.

3.6. Analysis liquid cromatography

In Fig. 8 shown the measurements of Direct Yellow-27 in several treatments before and

after degradation with the addition of N-doped TiO2 catalyst which was then tested with

liquid chromatography [37, 38] with its own assembly column. Liquid chromatography

test results of Direct Yellow-27 solution were carried out by solar irradiation method as
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Figure 7: The effect of time on the percentage of Direct Yellow-27 degradation with the addition of N-doped
TiO2 catalyst.

Figure 8: Direct Yellow-27 dye chromatogram (60 mg/L) (a) before degradation (b) 1 hour without catalyst
degradation (c) 1 hour degradation by adding N-doped TiO2 catalyst (d) 2 hours of degradation with addition
of N catalyst -doped TiO2.

one of the supporting data of the research. From the Fig. shows the peak widening of

the chromatogram indicates the success of Direct Yellow-27 degraded through solar

irradiation [39–41].

4. Conclusions

N-Doped TiO2 was proven to increase the efficiency of photolysis process in Direct

Yellow-27 degradation in UV light and solar irradiation, the most efficient photolysis
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process with the largest percent degradation was photolysis with the addition of N-

doped TiO2 catalyst using solar irradiation and confirmed dye degradation through

liquid chromatography.
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