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Abstract
This paper investigates the existence of intersite soliton in the Ablowitz-Ladik-cubic
discrete nonlinear Schrödinger (AL-cubic DNLS) equation in the anti-continuum limit by
using a variational approximation (VA) method. The AL-cubic equation interpolates the
integrable Ablowitz-Ladik DNLS equation and the non-integrable cubic DNLS equation.
We obtain that the approximated solitons are in good agreement with those resulted
from numerics. We also show that the approximated solitons are valid for small coupling
constant and for the interpolation parameter in the vicinity of the cubic DNLS equation.

Keywords: Discrete Nonlinear Schrödinger equation, intersite soliton, Ablowitz-Ladik
equation, variational approximation.

1. Introduction

One of equations that is often studied in both the theory aspect and in the context of
its application is the discrete nonlinear Schrödinger (DNLS) equation. This is because
the equation models many important phenomena, such as an array of nonlinear optical
waveguides etched onto a semiconductor material (AlGaAs) [1], matter wave dynamics in
Bose–Einstein condensates trapped in optical lattices and molecular biology (modeling
the DNA double strand) [2].

The most interesting feature about the DNLS equation is the existence of soliton.
Soliton is a localized solution that has properties: it maintains its shape and propagates
at a constant speed even after collision [3]. In the context of its application, Tagg [4]
described the use of solitons in fiber optic communication systems which provide highly
accurate signal transmission over extremely long distance. This is very important in the
development of future communication technology.

The general form of the DNLS equation is given by [2]

𝑖 ̇𝜑𝑛 = 𝜀 (𝜑𝑛+1 − 2𝜑𝑛 + 𝜑𝑛−1) + 𝐹 (𝜑𝑛+1, 𝜑𝑛, 𝜑𝑛−1) , (1)
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where 𝜑𝑛 ≡ 𝜑𝑛 (𝑡) ∈ ℂ is a wave function at time 𝑡 ∈ ℝ+ and site 𝑛 ∈ ℤ, ̇𝜑𝑛 represents
the derivative of the function 𝜑𝑛 with respect to 𝑡, 𝜀 > 0 represents coupling constant
and F is a nonlinear term that has several forms:

1. Ablowitz-Ladik (AL)

𝐹𝐴𝐿 =
1
2|𝜑𝑛|

2 (𝜑𝑛+1 + 𝜑𝑛−1) . (2)

2. Cubic

𝐹cub = |𝜑𝑛|2𝜑𝑛. (3)

In 1975-1976, Ablowitz and Ladik [5] showed that the DNLS equation with nonlinear
term (2) is integrable, while equation (3) is not integrable. For non-integrable equations,
an analytic approach is needed to approximate the solution. One of the methods which
is well known and has been long used to approximate solutions (including the localized
states) of a nonlinear evolution equation is the so-called variational approximation (VA).
Formulation of this method is based on theory of Lagrangian andHamiltonianmechanics
(see, e.g., [6]). The success of this method depends heavily on the trial function (ansatz)
used in approaching the desired solution.

VA methods have been used in various equations, including in determining soliton
solution in the cubic DNLS equation (3). Aceves et al [7] used the VA method to
approximate the onsite soliton solution (i.e centred on a lattice site). In addition, VA has
been also applied to approximate the intersite soliton solution (i.e centred between two
adjacent lattice sites) with symmetrical configuration by Cuevas et al [8]. Furthermore,
Kaup et al [9] developed the VA formulation to approximate the asymmetric intersite
soliton solution. The ansatz function used in [8] and [9] applies for the case 𝜀 ≈ 0 or
known as the anti-continuum limit.

The results of VA have been confirmed its validation through numerical comparisons
for certain parameter values. To justify rigorous VA validation, Chong et al. [10] have
developed a theorem that can be used as a tool of validation of the VA results. Chong
et al then confirmed that a trial function for solitons with more parameters provides a
more accurate approximation.

In this paper, the VA method will be applied to determine intersite soliton of the
following equation:

𝑖 ̇𝜑𝑛 = 𝜀 (𝜑𝑛+1 − 2𝜑𝑛 + 𝜑𝑛−1) +
𝛼
2 |𝜑𝑛|

2 (𝜑𝑛+1 + 𝜑𝑛−1) + (1 − 𝛼)|𝜑𝑛|2𝜑𝑛. (4)

Equation (4) can be viewed as an interpolation of the Ablowitz-Ladik DNLS equation
(when α = 1) and the cubic DNLS equation (when α = 0). Equation (4) is then called the
Ablowitz-Ladik-cubic discrete nonlinear Schr ̈𝑜dinger (AL-cubic DNLS) equation.
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2. The Formulation of Variational Approximation

In this section we describe the formulation of variational approximation method. This is
referred from reference [11]. Let 𝑢(𝑥, 𝑡) with 𝑡 ≥ 0 and for every 𝑥 ∈ Ω ⊆ ℝ, satisfy partial
differential equations in the form

𝑢𝑡 = 𝑓𝑣 (𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) + 𝑓𝑛𝑣(𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥), (5)

where 𝑓𝑣 denotes a variational term and 𝑓𝑛𝑣 denotes a nonvariational term, i.e there is
a function 𝐹(𝑥, 𝑢, 𝑢𝑥) such that

𝑓𝑣 (𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) =
𝜕𝐹
𝜕𝑢 − 𝑑

𝑑𝑥
𝜕𝐹
𝜕𝑢𝑥

. (6)

In the variational case (that is by assuming that 𝑓𝑛𝑣≡ 0), the stationary solutions of (6)
are indeed extrema of the functional (called Lagrangian)

L ∶= ∫Ω
−𝐹(𝑥, 𝑢, 𝑢𝑥)dx. (7)

Suppose a variational solution can be written in the form 𝑢 = 𝑈 (𝑥, 𝐴1,… , 𝐴𝑛) with
a finite number of parameters 𝐴1, 𝐴2,… , 𝐴𝑛. The result of integration (7) using such
a variational solution is called effective Lagrangian (𝐿eff). Thus the extreme value for
effective Lagrangian satisfies

𝜕𝐿eff

𝜕𝐴𝑖
= ∫Ω

𝜕𝑈
𝜕𝐴𝑖 [

𝑑
𝑑𝑥

𝜕𝐹
𝜕𝑈𝑥

− 𝜕𝐹
𝜕𝑈 ]dx, 𝑖 = 1, 2,… , 𝑛. (8)

Suppose now that the parameters are time-dependent functions, denoted as 𝐴𝑖 (𝑡) .
Thus from equation (5) we obtain the following relationship

𝜕𝐹
𝜕𝑢 − 𝑑

𝑑𝑥
𝜕𝐹
𝜕𝑢𝑥

=
𝑛

∑
𝑗=1

𝜕𝑈
𝜕𝐴𝑗

̇𝐴𝑗 − 𝑓𝑛𝑣(𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥), (9)

where ̇𝐴𝑗 =
𝑑𝐴𝑗
𝑑𝑡 . Upon substituting equation (9) into equation (8), then for every 𝑖 we

obtain

𝜕𝐿eff

𝜕𝐴𝑖
= ∫Ω

𝜕𝑈
𝜕𝐴𝑖 [

𝑓𝑛𝑣 −
𝑛

∑
𝑗=1

𝜕𝑈
𝜕𝐴𝑗

̇𝐴𝑗]
dx. (10)

Suppose

𝑀𝑖𝑗 = ∫Ω
𝜕𝑈
𝜕𝐴𝑖

𝜕𝑈
𝜕𝐴𝑗

dx, (11)

then equation (10) for each 𝑖 = 1, 2,… , 𝑛 can be rewritten as follows
𝑛

∑
𝑗=1

𝑀𝑖𝑗 ̇𝐴𝑗 = −𝜕𝐿eff

𝜕𝐴𝑖
+∫Ω

𝜕𝑈
𝜕𝐴𝑖

𝑓𝑛𝑣𝑑𝑥. (12)
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For discrete system in space, equation (12) can be changed analogously to be
𝑛

∑
𝑗=1

𝑀𝑖𝑗 ̇𝐴𝑗 = −𝜕𝐿eff

𝜕𝐴𝑖
+ ∑

𝑚∈Φ⊂ℤ

𝜕𝑈𝑚
𝜕𝐴𝑖

𝑓𝑛𝑣. (13)

In brief, the systematic steps of the VA method for both variational and nonvariational
cases are given as follows:

1. Formulate the Lagrangian of the variational part of the governing equation.

2. Propose a reasonable trial function (ansatz) which contains a finite number of
parameters (called variational parameters).

3. Substitute the proposed ansatz into the Lagrangian and evaluate the resulting
sums (for discrete systems) or integrations (for continuous system).

4. Find the critical points of the variational parameters by solving the corresponding
system (12) [for continuous system] or system (13) [for discrete system].

3. Variational Approximation of AL-cubic DNLS Equation

By performing the separation of variables, 𝜑𝑛 (𝑡) can be written in the form

𝜑𝑛 (𝑡) = 𝑄𝑛𝑒−𝑖𝑡, (14)

where 𝑄𝑛 is a time-independent function. Next, by substituting equation (14) into (4), we
obtain the following stationary equation

𝜀 (𝑄𝑛+1 − 2𝑄𝑛 + 𝑄𝑛−1) − 𝑄𝑛 +
𝛼
2 |𝑄𝑛|2 (𝑄𝑛+1 + 𝑄𝑛−1) + (1 − 𝛼) |𝑄𝑛|2𝑄𝑛 = 0. (15)

In general, solutions for 𝑄𝑛 are complex valued. However, in this paper we are only
consider the real-valued solution. Therefore, equation (15) can be simplified to

𝜀 (𝑄𝑛+1 − 2𝑄𝑛 + 𝑄𝑛−1) − 𝑄𝑛 +
𝛼
2𝑄𝑛

2 (𝑄𝑛+1 + 𝑄𝑛−1) + (1 − 𝛼) 𝑄𝑛
3 = 0. (16)

Equation (16) can be written as follows:

𝑓 𝑣 + 𝑓𝑛𝑣 = 0, (17)

where

𝑓 𝑣 = 𝜀 (𝑄𝑛+1 − 2𝑄𝑛 + 𝑄𝑛−1) − 𝑄𝑛 + (1 − 𝛼) 𝑄𝑛
3, (18)

and

𝑓𝑛𝑣 =
𝛼
2𝑄𝑛

2 (𝑄𝑛+1 + 𝑄𝑛−1) . (19)
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Next, we are ready to apply the VA method. The first step is to determine the
Lagrangian formula for the variational part ( 𝑓 𝑣), which is given by

𝐿 =
∞

∑
𝑛=−∞

−(−𝜀𝑄𝑛−1𝑄𝑛 +
1
2(1 + 2𝜀)𝑄𝑛

2 − (1 − 𝛼)
4 𝑄𝑛

4
). (20)

The second step is to select the appropriate ansatz function. In this paper, we are
interested to find the approximation of the intersite soliton. Thus, the following ansatz
function can be selected:

𝑄𝑛 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐴𝑒𝜂(𝑛−1), 𝑛 ≤ −1

𝐵, 𝑛 = 0, 1

𝐴𝑒−𝜂(𝑛−2), 𝑛 ≥ 2

(21)

where 𝐴, 𝐵 and 𝜂 are real valued variational parameters.

The third step is to substitute ansatz (21) into equation (20) and then evaluate the
resulting sum. This gives the effective Lagrangian as follows

𝐿eff = −12
1

𝑒4𝜂 − 1( 𝐵4 + 4𝜀𝐴𝐵 − 𝐵4𝛼 − 𝐵4𝑒4𝜂 + 2𝐵2𝑒4𝜂 + 2𝑒2𝜂𝐴2 − 2𝐵2 − 2𝜀𝐵2

−4𝜀𝐴2𝑒3𝜂 + 2𝐴2𝑒4𝜂 − 𝐴4𝑒4𝜂 − 4𝜀𝐴𝐵𝑒4𝜂 + 4𝑒2𝜂𝐴2𝜀 − 4𝐴2𝑒𝜂𝜀

+𝐵4𝛼𝑒4𝜂 + 2𝜀𝐵2𝑒4𝜂 + 𝐴4𝛼𝑒4𝜂 + 4𝜀𝐴2𝑒4𝜂).

(22)

By substituting the effective Lagrangian (22), ansatz (21) and the nonvariational part
(19) into equation (13), then the following system of equations is obtained

𝒜1 + 𝒜2 = 0, (23)

ℬ1 = 0, (24)

𝒞1 + 𝒞2 = 0, (25)

where

𝒜1 =
1

𝑒4𝜂 − 1 (2𝜀𝐵 + 2𝑒2𝜂𝐴 − 4𝜀𝐴𝑒3𝜂 + 2𝐴𝑒4𝜂 − 2𝐴3𝑒4𝜂 − 2𝜀𝐵𝑒4𝜂 + 4𝐴𝑒2𝜂𝜀)

𝒜2 =
1

𝑒4𝜂 − 1 (−4𝐴𝑒
𝜂𝜀 + 2𝐴3𝛼𝑒4𝜂 + 4𝐴𝜀𝑒4𝜂 + 𝐴3𝛼𝑒𝜂 + 𝐴2𝛼𝐵𝑒4𝜂 − 𝐴2𝛼𝐵 + 𝐴3𝛼𝑒3𝜂)

ℬ1 = −2𝐵3 + 2𝐵 − 2𝜀𝐴 + 3𝐵3𝛼 + 2𝜀𝐵 + 𝛼𝐵2𝐴
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𝒞1 = − 1
(𝑒4𝜂 − 1)2 {

𝑒𝜂𝐴2 (−2𝜀 − 6𝑒2𝜂𝜀 + 4𝑒𝜂𝜀 + 8𝑒3𝜂𝜀 − 6𝜀𝑒4𝜂 + 2𝑒𝜂 + 4𝑒3𝜂)}

𝒞2 = − 1
(𝑒4𝜂 − 1)2 {

𝑒𝜂𝐴2 (−2𝐴2𝑒3𝜂 + 2𝑒5𝜂 + 2𝐴2𝑒3𝜂𝛼 − 2𝑒6𝜂𝜀 + 4𝑒5𝜂𝜀 + 𝛼𝐴2𝑒4𝜂 + 𝑒2𝜂𝐴2𝛼)}

Due to complexity of the calculation, solutions for parameters 𝐴, 𝐵, and 𝜂 for given ε
and α in the above system can be determined numerically using the Newton-Raphson
method.

4. The VA Results and Comparisons with Numerics

In this section, we compare the results of variational approximations with the corre-
sponding numerical calculations. In this case, the numerical solution for the intersite
soliton of (16) can be determined using the Newton-Raphson method where the VA
solutions can be used as the initial guess. For illustrative example, in Figure 1 is shown
a comparison between two intersite soliton solutions obtained from numerics and VA
for coupling constant 𝜀 = 0.01; 0.02; 0.05, and intepolation parameter 𝛼 = 0.01; 0.44.

Fig. 1 also gives the solutions for varational parameters A, B, and 𝜂 which are obtained
by solving the system of equations (23)-(25) numerically for given ε and α. From the
figure we can observe that the VA soliton solutions and the numerical solutions have a
very good agreement for some parameter values 𝛼 and 𝜀.

5. Validation of VA Results

Validation of VA results for discrete solitons in the stationary equation (16) is based on
the justification formulated by Chong et al. [10]. To measure the accuracy of variational
solution of equation (16), define its residual as

𝑅𝑛 (𝑄) = 𝜀 (𝑄𝑛+1 − 2𝑄𝑛 + 𝑄𝑛−1) − 𝑄𝑛 +
𝛼
2𝑄𝑛

2 (𝑄𝑛+1 + 𝑄𝑛−1) + (1 − 𝛼) 𝑄𝑛
3. (26)

Note that if 𝑄 is an exact solution, then 𝑅𝑛 (𝑄) will be zero for every 𝑛. Thus a
variational solution will approach the exact solution if 𝑅𝑛 (𝑄) → 0 for every 𝑛.

Validation of the VA for the intersite soliton of the stationary AL-cubic DNLS equation
(16) is given in the following propositions.

Proposition 1. Suppose 𝑄∗ is a variational solution of intersite solitonof the stationary

AL-cubic DNLS equation (16) which is expressed by ansatz (21), where the variational

DOI 10.18502/keg.v1i2.4430 Page 6
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Figure 1: Comparison between numerical (circle markers) and variational (cross markers) solutions of the
intersite soliton for some parameter values.
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parameters 𝜂, 𝐴, 𝐵 satisfy the equations (23), (24) and (25). Then there is 𝜀0, 𝐾 > 0
such that for all 𝜀 ∈ (0, 𝜀0), equation (16) has a unique solution Q that satisfies

‖𝑄 − 𝑄∗‖𝑙2 ≤ 𝐾𝜀2. (27)

Proof. Note that the rate of exponential decay of discrete soliton follows from the linear
theory of difference equations. Therefore, the solution for parameter 𝜂 can be obtained
by substituting 𝑄𝑛 = 𝐶𝑒−𝜂𝑛, where 𝐶 is a non-zero constant, into the linear part of
equation (16), that is

𝜀 (𝑄𝑛+1 − 2𝑄𝑛 + 𝑄𝑛−1) − 𝑄𝑛 = 0, (28)

which yields

− 𝜀2 (𝑒−𝜂 + 𝑒𝜂) = (2𝑐 + 1) ⇒ 𝜂 = arccosh(
2𝜀 + 1
2𝜀 ) . (29)

Taylor expansion of 𝑒𝜂 at 𝜀 ≈ 0 is given by

𝑒𝜂 = 𝜀 − 2 𝜀2 + 5𝜀3 − 14𝜀4 + 𝒪 (𝐶5) . (30)

Let us assume that parameters 𝐴 and 𝐵 can be written in the following form of
expansion

𝐴 = 𝑎0 + 𝑎1𝜀 + 𝑎2𝜀2 + 𝑎3𝜀3 + 𝒪(𝜀4), (31)

𝐵 = 𝑏0 + 𝑏1𝜀 + 𝑏2𝜀2 + 𝑏3𝜀3 + 𝒪(𝜀4), (32)

where 𝑎𝑖 and 𝑏𝑖 are coefficients that will be determined its values by substituting
equations (30), (31) and (32) into equations (23) and (24), and then collect the resulting
terms in successive powers of 𝜀.

Next, substitution of ansatz (21) into equation (26) gives

𝑅𝑛(𝑄) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜀 (𝐴𝑒𝜂(𝑛+2) − 2𝐴𝑒𝜂(𝑛+1) + 𝐴𝑒𝜂𝑛) − 𝐴𝑒𝜂(𝑛+1) + 1
2𝛼𝐴

2(𝑒𝜂(𝑛+1))2

(𝐴𝑒𝜂(𝑛+2) + 𝐴𝑒𝜂𝑛) + (1 − 𝛼)𝐴3(𝑒𝜂(𝑛+1))3, 𝑛 ≤ −2

𝜀𝐵 − 2𝜀𝐴 + 𝜀𝐴𝑒−𝜂 − 𝐴 + 1
2𝛼𝐴

2𝐵 + 1
2𝛼𝐴

2𝑒−𝜂 + 𝐴3 − 𝐴3𝛼, 𝑛 = −1

𝜀𝐵 − 2𝜀𝐴 + 𝜀𝐴𝑒−𝜂 − 𝐴 + 1
2𝛼𝐴

2𝐵 + 1
2𝛼𝐴

2𝑒−𝜂 + 𝐴3 − 𝐴3𝛼, 𝑛 = 2

𝜀 (𝐴𝑒−𝜂(𝑛−1) − 2𝐴𝑒−𝜂(𝑛−2) + 𝐴𝑒−𝜂(𝑛−3)) − 𝐴𝑒−𝜂(𝑛−2) + 1
2𝛼𝐴

2(𝑒−𝜂(𝑛−2))2

(𝐴𝑒−𝜂(𝑛−1) + 𝐴𝑒−𝜂(𝑛−3)) + (1 − 𝛼)𝐴3(𝑒−𝜂(𝑛−2))3, 𝑛 ≥ 3

(33)

DOI 10.18502/keg.v1i2.4430 Page 8



 
ICBSA 2018

Upon substituting expansions (30), (31), (32) into equation (33), one can obtain for
𝛼 → 0 as follows

𝑅0,1 (𝑄) = 0,

𝑅−1,±2 (𝑄) = 𝒪(𝜀2), (34)

𝑅𝑛≤−3 (𝑄) = 𝒪 (𝜀|𝑛−3|) ,

𝑅𝑛≥3 (𝑄) = 𝒪 (𝜀|𝑛+2|) .

One can check that sequence {𝑅𝑖 (𝑄)}∞𝑖=1 converges to 0. Therefore |𝑅1|2+|𝑅2|2+…
is convergent or ∑∞

𝑘=1 |𝑅𝑘|2 < ∞. This explains that 𝑅𝑖 (𝑄) is in 𝑙2 space with norm

‖𝑅(𝑄)‖𝑙2 = √|𝑅1|2 + |𝑅2|2 +… . Thus from (34), we have

‖𝑅(𝑄)‖𝑙2 = 𝒪(𝜀2) as 𝜀, 𝛼 → 0. (35)

Moreover, let us suppose 𝑆 = {0, 1}, 𝑒0 = (… , 0, 0, 0, 1, 0, 0, 0, … ) , 𝑒1 =
(… , 0, 0, 0, 1, 0, 0, , … ) , 𝜎0 = 𝐶 , and 𝜎1 = 𝐶 for 𝐶 > 0. For the case of intersite
discrete soliton, it can be shown that the variational solution 𝑄∗ expressed by ansatz
(21) satisfies the relationship

lim
𝜀,𝛼→0 ‖𝑄∗ − (𝜎0𝑒0 + 𝜎1𝑒1)‖𝑙2 = 0. (36)

Based on Chong et al. [10], there is 𝜀0, 𝐾 > 0 and the unique solution 𝑄 of stationary
AL-cubic DNLS equation (16) with 𝜀 ∈ (0, 𝜀0) such that

‖𝑄 − 𝑄∗‖𝑙2 ≤ 𝐾𝜀2. (37)

■

Since the exact solution is unknown, in practice the quantity of ‖𝑄 − 𝑄∗‖𝑙2 can be
replaced by

error = ‖𝑄num − 𝑄∗‖ , (38)

where 𝑄num is the numerical solution. As an illustration, suppose the validation of the
VA results will be checked for parameter value 𝛼 = 0.001. Plot of error (38) in varied 𝜀
for such 𝛼 is given in Fig. 2.

From Fig. 2, it can be seen that the error gets bigger as 𝜀 increases. To find out the
function of error curve, we perform the best power fit, which gives 𝑓 (𝜀) = 1.2997𝜀2.0032.
Note this result satisfies equation (27) in Proposition 1. This confirms that the VA solution
for intersite soliton using ansatz (21) is valid.
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Figure 2: The error between variational and numerical solutions in varied 𝜀 for 𝛼 = 0.001.

6. Conclusion

Variational approximation (VA) developed for stationary intersite soliton in the AL-
cubic DNLS equation gives very good results for small coupling constant and small
interpolation parameter. Following reference [10], we also show that the obtained VA
solutions are valid.
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