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The physical properties and structure, thermoelastic martensitic transformations (TMT’s)
of Nis,Mny,_, Al alloys (x=0-25) were studied by the methods of resistomeyry and
durametry, transmission and scaning electron microscopy (TEM and SEM), and X-ray
diffraction analysis. It has been shown that the critical temperatures of TMT’s are found
to be decrease with increasing aluminum content, and the structure of martensite
changes: 2M(L1,) and multilayered 10M and 14M. Martensite has a hierarchic packet
morphology of coherent plates of nano- and submicrocrystalline crystals with habit
boundaries close to {110} p,.

thermoelastic martensitic transformations, phase composition, Ni-Mn,
martensite, electron-microscopic studies.

The thermoelastic B2«<L1, martensitic transformations in binary Nis,Mns, and NiyMns,;
alloys are known to occur at high temperatures; therefore, it is rather difficult to study
the structure and properties of these alloys. In [1, 2], we comprehensively investigated
the fine structure and the TMTs of these alloys and determined critical temperatures: M,
=970 K, M, =920 K, A; =970 K, and A, = 1020 K; M, =940 K, M, = 930 K, A; = 990
K, and A, =1000 K, respectively. The high temperature B2-L1, phase transformations
were detected in many binary and multicomponent intermetallic alloys based on nickel
and titanium, such as Ni—-Mn, Ni—-Mn-Al, Ni—Al, Ni—-Al-Co, Ni-Cu-Al, Ti—Rh, Ti—Rh—Ni,
Ti—Ir, and Ti—Ir—Ni [3-14]. We assumed that these transformations in the alloys based
on these intermetallic compounds also has the character of TMT, which should cause
shape memory effects in them. Nevertheless, the boundaries of phase transformations
and the crystal-structure types of austenite and martensite phases have not been exactly

determined for ternary Ni-Mn—Al quasi-binary system. As a rule, alloying with a third
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chemical element decreases critical temperatures Mg, M., A;, and A, which facilitates
the designing of alloys with given martensitic transformation parameters. The purpose
of this work is to study the influence of aluminum alloying on the structure and the ther-
moelastic martensitic transformations, i.e., the critical points of the forward (M, M,) and
reverse (A;, A) transformations, in quasi-binary NisoMns,_, Al, alloys. There is reason to
believe that this transformations in alloys based on such intermetallic compounds and
in other B2 nonferrous alloys (titanium nickelide, copper based alloys, ferromagnetic
Heusler alloys, alloys based on alloyed manganese nickelide) also have characteristics

of TMT, and this fact should cause the shape memory effects in them.

The alloys were melted by the electric-arc method from high-purity metals (99,99-
99,999% purity) in an inert atmosphere of purified argon. The ingots (certified by the
chemical composition) for homogenization were subjected to remelting (at least three
times) followed by longterm vacuum annealing at 1173 K. The alloy ingots were spark-cut
into plates, which were again subjected to homogenizing annealing during 6 h followed
by water quenching or slow (~100 K/h) cooling from 1073 or 1173 K. The X-ray diffraction
analysis by the 6/20 method was carried out using a DRON-3M diffractometer in the Cu
Ko radiation monochromatized by a graphite single crystal. The electron-microscopic
studies were performed at the Center of Collaborative Access, Institute of Metal Physics,
Ural Branch, Russian Academy of Sciences using JEM-200 CX (maximum accelerating
voltage of 200 kV) and CM-30 transmission electron microscopes and Quanta 200
scanning electron microscope (maximum accelerating voltage of up to 30 kV), which
was equipped with EDS and EBSD systems. Electron-microscopic transmission studies
were performed using bright- and dark-field regimes. To identify phases, we analyzed
selected area electron diffraction (SAED) patterns. Electrical resistivity p(T) was mea-

sured by potentiometry using a double bridge in the temperature range 100-1170 K.

In accordance with the transition temperatures determined from the resistivity curves
P (T), a diagram of martensitic transformations was constructed (shown in Fig. 1). This
diagram shows the temperature and concentration dependences of martensitic trans-
formations of alloys, as well as atomic ordering B2 < L2, of austenitic phases and

magnetic transitions from a paramagnetic state to antiferro- and ferromagnetic. The
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phase composition of the alloys was determined by the X-ray method and from selected
electron diffraction patterns [1-14].

In accordance with the presented diagram, it follows that at room temperature the
structure of martensitic phases changes with increasing aluminum content in the follow-
ing sequence: a crystal lattice of type L1, (2M), 14M and 10M.

The results of the microhardness measurements of the alloys are given in Table.
Doping with aluminum in the range from O to 18 at. % reduces the resistance of martensite
to the hardness tester indenter. It can be concluded that, being in a martensitic state
2M and 14M with lower elastic moduli, these alloys have a lower hardness. Increase of
microhardness in alloys with 20 and 22 at. % Al can be associated, first, with a further
change in the type of the crystal structure of martensite from 14M to 10M. But, most
likely, this fact correlates with the fact that the critical temperatures in these alloys are
close to room temperature, at which microhardness measurements were carried out.
Therefore, an increase of microhardness in alloys with 20 and 22 at. % Al may be due to
the presence of two-phase (B2 + 10M), induced and due to deformation in the testing of
hardness, providing additional hardening of the alloys. In austenitic alloys with 24 and 25
at. % Al superstructural atomic ordering occurs from B2 and L2, and the microhardness

decreases again slightly.

ela
8,50 8,10 7,70 7,30

0 - - — - t— -
0 10 20 30
Al at, %

Figure 1: Phase diagram of martensitic transformations of Nis,Mns,_ Al alloys of the quasi-binary system
NiMn — NiAl.

TABLE 1: The dependence of microhardness on the chemical composition.

X, at. % Al 0 10 18 20 22 25
HV, Ma 4,30 3,52 2,90 3,79 3,79 3,10
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A fractography of the alloys was carried out using SEM in the secondary electron
mode after bending tests of samples in order to determine the nature of the fracture.
In fig. 2, a, b shows the image of the fractures of the studied alloys. Fractographic
studies have shown that their destruction occurs both by means of the transcrystalline
(along the grain boundaries) and intercrystalline types (mainly along the joints of the
packets of martensitic crystals inside the grain). Obviously, the brittle destruction occurs
along the grain (Fig. 2, a). Intercrystalline destruction occurrs by brittle and brittle-ductile
types, which probably depends on the location of the packages of martensitic plates
relative to the direction of the fracture crack. If the crack expends along the flat boundary
of the package, then brittle fracture occurs. This behavior can be explained by the
concentration of the strains and stresses near the boundaries packages caused by the
realization of the TMTs in certain regions of the polycrystalline alloy. If the crack develops
at an angle to the martensitic plates, then in such areas the fracture has a ductile or
brittle-ductile nature (Fig. 2, b).

Figure 2: Fractographic studies of alloys: a - NisoMns, Al g; b - NisgMn3 Al

The thin structure of these alloys was studied by TEM. Fig.3 shows TEM images
of the martensite in the NisyMn;,Al ¢ alloy (a, b) and the corresponding selected area
electron diffraction (SAED) patterns (c). It allows to identify a seven-layer crystal lattice
corresponding to the 14M crystal lattice. The substructure is represented by thin plates
of the martensitic phase. The boundaries of the packets of martensitic plates are runoffs
of grain-boundary misfit dislocations.

TEM studies were also carried out on alloys doped with 22 and 25 at% Al. They
showed that Nis,Mn,sAl,alloy is in single-phase austenitic state B2 (or L2,). This is
evidenced not only by dark-field and bright-field images of the tweed structure (Fig.
4 a, b), but also the analysis of SAED patterns (Fig. 4 ¢, d, €) and X-ray data. The analysis
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showed that the diffuse scattering bands, which are more intense near the reflections,
are traces of the intersection of the Ewald sphere by flat scattering layers along the {111}*
of reciprocal lattice, passing through its nodes, with the exception of 000. The strongest

scattering is concentrated along the <110>* and <112>*.

The regular nature of diffuse scattering and tweed contrast is due to the presence of
localized cooperative, mainly shear, atomic displacements in crystals [4]. Flat scattering
layers over {111}* are interpreted in elastic-soft low-modulus crystals as a result of desta-
bilization with respect to local displacements of close-packed atomic chains by <111>
and their shear correlations over close-packed {110} type planes. These phenomena

indicate that the alloy under study was in the pretransition B2 state [4, 5].

Figure 3: Bright-field TEM images of the 14M — martensite structure in the Nig,Mn,Al 4 alloy (a, b), typical
SAED of the alloy (c), enlarged fragment of the SAED pattern (d).

The crystal lattice of the Nis,Mn,sAl,5 alloy, according to X-ray analysis, is ordered by
type L2,. The SAED patterns presented in Fig. 5, ¢, d show diffraction patterns that are
identical to B2 or L2, phase diffractions. They clearly show diffuse effects in the form
of band and satellites. In addition, the grain structure of the alloy has tweed diffraction

contrast (Fig. 5, a, b). These effects indicate the pretransition state of the alloy.
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Figure 4: Bright-field (a), dark field (b) microstructure images and SAED patterns (c - €) of B2-austenite of
NisoMny.Al,, alloy.

DOI10.18502/keg.v1i1.4411

. It is shown that with increasing in the aluminum content in alloys of the NiMn-

NiAl quasi-binary system, the critical temperatures of the thermoelastic marten-
sitic transformations decrease and the martensite crystal lattice changes in the
sequence 2M - 14M - 10M.

. The microhardness of the studied alloys naturally changes depending on the

chemical composition and structural type of the resulting martensite with a specific

thin substructure and morphology of martensitic crystals.

. Destruction in the studied alloys occurs by transcrystalline and intercrystalline

types. In alloys, brittle transcrystalline fracture cracks expend both along grain
boundaries and along flat boundaries of martensite plate packs; intercrystalline
brittle-ductile fracture occurs when cracks expand along shear systems at an angle

to the habit of martensitic plates.

. As shown by TEM and SEM, martensite has a predominant morphology in the

form of a hierarchy of packages of lamellar and internally finely twinned coherent
crystals with flat habit boundaries close to {110} z,. The systems of twinning shear
for all types of martensite are close to the soft mode {101} <101 > p Of B2

austenite.
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Figure 5: Bright-field (a), dark-field (b) images of the microstructure and SAED patterns of the L21-austenite
(c, d) of the Nis,Mn,sAl,5 alloy.

5. It was found that in the premartensitic state, the austenite of the studied alloys can
be described by short-range atomic displacements of the type of future marten-
sitic phase mainly by correlated and lateral displacements along the {101} <101>

system with the formation of nano-localized structures of the intermediate type.
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