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Abstract
Mathematical model of heat exchange in melting furnace tank is considered.
Equations of impulse balance for infinitesimal volume as well and continuity equation
are simplified. Dimensionless parameters for compilation of discrete analogue are
introduced. The system of equations of melt movement is made, solution of which is
supposed to be performed using finite-difference methods. The approximate methods
of solution of radiation transfer equation for optically thin and optically thick layers
are considered. For optical thin layer expressions of spectral function of the source in
the assumption of isotropic radiation and axial symmetry, intensity of radiation on the
boundary areas and density of the monochromatic flux for the resulting radiation are
simplified. Expression for the density of the monochromatic flux in the approximation
of the optically dense layer is developed.
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1. Introduction

The mathematical model of heat exchange, considered in the article, is intended for
use in calculations of heat exchange in tanks of glass and open-hearth furnaces [1–5],
but can be also used for melting furnaces of other design.

When using the mathematical model, the initial data play a significant role, and
special attention shall be paid to the coefficient of heat exchange. Since heat exchange
in the furnace tank is provided to a greater extent by radiation, the article describes
approximate methods of solving radiation transfer equation.
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Approximate methods are important as use of calculations using integro-differential
equations and engineering packages of programming causes a lot of mathematical dif-
ficulties and makes calculations too lengthy. Approximate methods solve these prob-
lems without reducing the accuracy of calculations.

2. Mathematical Model of Heat Exchange in
the Melting Furnace Tank

When developing the numerical scheme of the melting furnace it is expedient to care-
fully consider the peculiarities of melt. The first such feature is its high density. Con-
sidering the high viscosity and slow movement (practically creeping), it is possible to
consider confidently a melt as incompressible liquid. Of course, its density depends on
the temperature, and temperature in the tank changes, but firstly, this dependence is
weak and, secondly, melt temperature in the tank varies from 1000 to 1580C, which
results in relatively minor changes in density. In other words, it is possible to consider
with sufficient accuracy for melt 𝑑𝑖𝑣𝑣 = 0 and to write down equations of movement
as follows:

– in the projection on the x-axis

𝜌(𝑢
𝜕𝑢
𝜕𝑥 + 𝑣𝜕𝑢𝜕𝑦 + 𝑤𝜕𝑢

𝜕𝑧) = −𝜕𝑝𝜕𝑥 + 2 𝜕
𝜕𝑥 (𝜇

𝜕𝑢
𝜕𝑥)+

𝜕
𝜕𝑦 [𝜇 (

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥)]+

𝜕
𝜕𝑧 [𝜇 (

𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥 )] ;

(1)
– in the projection on the y-axis

𝜌(𝑢
𝜕𝑣
𝜕𝑥 + 𝑣𝜕𝑣𝜕𝑦 + 𝑤𝜕𝑣

𝜕𝑧) = −𝜕𝑝𝜕𝑥 + 𝜕
𝜕𝑥 [𝜇 (

𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑦)]

+2 𝜕𝜕𝑦 (𝜇
𝜕𝑣
𝜕𝑦) + 𝜕

𝜕𝑧 [𝜇 (
𝜕𝑣
𝜕𝑧 +

𝜕𝑤
𝜕𝑦 )] ;

(2)

– in the projection on the z-axis

𝜌(𝑢
𝜕𝑤
𝜕𝑥 + 𝑣𝜕𝑤𝜕𝑦 + 𝑤𝜕𝑤

𝜕𝑧 ) = −𝜕𝑝𝜕𝑧 +
𝜕
𝜕𝑥 [𝜇 (

𝜕𝑤
𝜕𝑥 + 𝜕𝑢

𝜕𝑧)]

+ 𝜕
𝜕𝑦 [𝜇 (

𝜕𝑤
𝜕𝑦 + 𝜕𝑣

𝜕𝑥)] + 2 𝜕𝜕𝑧 (𝜇
𝜕𝑤
𝜕𝑧 ) − 𝜌𝑔.

(3)

The viscosity of the melt is essentially dependent on the temperature. However, equa-
tions (1)–(3) are equations of impulse balance for infinite small volume. In drawing up
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this balance it is possible to consider that melt temperature, and, consequently, and
its viscosity, within the limits of elementary volume are identical. Then μ can be put
out from under a derivatives sign that leads to simplification of equations.

In fact, for example, in equation (1) it is possible to allocate components:

𝜇𝜕
2𝑢
𝜕𝑥2 + 𝜇 𝜕2𝑣

𝜕𝑦𝜕𝑥 + 𝜇 𝜕2𝑤
𝜕𝑧𝜕𝑥 = 𝜇 𝜕

𝜕𝑥 (
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 +
𝜕𝑤
𝜕𝑧 ) = 0

and similarly for equations (2) and (3). Note that this approach does not exclude calcu-
lation of the dependence μ on temperature, so the final form of the motion equations
can be represented as follows (for the x-axis):

𝜌(𝑢
𝜕𝑢
𝜕𝑥 + 𝑣𝜕𝑢𝜕𝑦 + 𝑤𝜕𝑢

𝜕𝑧) = −𝜕𝑝𝜕𝑥 + 𝜕
𝜕𝑥 (𝜇

𝜕𝑢
𝜕𝑥) +

𝜕
𝜕𝑦𝜇 (

𝜕𝑢
𝜕𝑦) + 𝜕

𝜕𝑧𝜇 (
𝜕𝑢
𝜕𝑧) .

For other axes, the equation is written in the same way.

The equation of continuity can also be simplified. Although we shall formally con-
sider the presence of internal sources (effluents) of the mass, in fact we cannot do this
because of the uncertainty of kinetics of physical and chemical transformations and
lack of a mathematical description of this kinetics. Therefore, we will use the equation
of continuity in the following form

𝜕
𝜕𝑥(𝜌𝑢) +

𝜕
𝜕𝑦(𝜌𝑣) +

𝜕
𝜕𝑧(𝜌𝑤) = 0.

Here we are somewhat contradictory to the aforementioned statement about incom-
pressibility of melt, however, firstly, the introduction of density under the signs of
derivatives does not complicate the equation, and, secondly, we prepare grounds for
further accounting of heat exchange. Construction of a discrete analogue shall always
be performed for dimensionless equations, because in this case it is easier to estimate
the approximation and stability of the numerical scheme. Therefore, introduce the
corresponding dimensionless parameters. We will calculate the components of speed
in the fractions of the average flow rate of melt in the duct

𝑉0 = 𝑃/(86, 4𝜌0𝑧2𝑏2),𝑀/𝐶,

where 𝜌0 = scale value of density; P = furnace performance; z2 = duct height, b2 = duct
width.
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The index ‘0’ in the heat physical parameters characterizes the value at the scale
temperature T0. As a characteristic length we will accept length L:

𝑈 = 𝑢
𝑉0
, 𝑉 = 𝑣

𝑉0
, 𝑊 = 𝑤

𝑉0
, 𝑋 = 𝑥

𝐿, 𝑌 = 𝑦
𝐿, 𝑍 = 𝑧

𝐿,

𝐻 = ℎ
𝐿, 𝐵 = 𝑏

𝐿, 𝑍2 =
𝑧2
𝐿 , 𝐵2 =

𝑏2
𝐿 , 𝑋1 =

𝑥1
𝐿 , ̃𝜌 = 𝜌

𝜌0
, 𝜇 = 𝜇

𝜇0
.

Here h = depth of the melt layer in the tank; b = tank width; x1 = length of the feed
end of the tank. Substitution of these ratios in the conservative form of the equation
record in the projection on the x-axis (similarly for other axes) leads to the expression:

𝜕𝑃
𝜕𝑋 + 𝜕

𝜕𝑋 ( ̃𝜌𝑈 2 − 𝜇
𝑅𝑒

𝜕𝑈
𝜕𝑋) + 𝜕

𝜕𝑌 ( ̃𝜌𝑈𝑉 − 𝜇
𝑅𝑒

𝜕𝑈
𝜕𝑌 ) + 𝜕

𝜕𝑍 ( ̃𝜌𝑈𝑊 − 𝜇
𝑅𝑒

𝜕𝑈
𝜕𝑍) = 0,

where 𝑃 = 𝑝/(𝜌0𝑉 2
0 ) = dimensionless pressure or Euler number, 𝑅𝑒 = 𝜌0𝑉0𝐿/𝜇0 =

Reynolds number, 𝐹𝑟 = 𝑉 2
0 /(𝑔𝐿) = Froude number.

Introduce symbols:

𝐹1 = ̃𝜌𝑈 2 − 𝜇
𝑅𝑒

𝜕𝑈
𝜕𝑋 , 𝐺1 = ̃𝜌𝑈𝑉 − 𝜇

𝑅𝑒
𝜕𝑈
𝜕𝑌 , 𝐻1 = ̃𝜌𝑈𝑊 − 𝜇

𝑅𝑒
𝜕𝑈
𝜕𝑍 ,

𝐹2 = ̃𝜌𝑈𝑉 − 𝜇
𝑅𝑒

𝜕𝑉
𝜕𝑋 , 𝐺2 = ̃𝜌𝑉 2 − 𝜇

𝑅𝑒
𝜕𝑉
𝜕𝑌 , 𝐻2 = ̃𝜌𝑉𝑊 − 𝜇

𝑅𝑒
𝜕𝑉
𝜕𝑍 ,

𝐹3 = ̃𝜌𝑈𝑊 − 𝜇
𝑅𝑒

𝜕𝑊
𝜕𝑋 , 𝐺3 = ̃𝜌𝑉𝑊 − 𝜇

𝑅𝑒
𝜕𝑊
𝜕𝑌 , 𝐻3 = ̃𝜌𝑊 2 − 𝜇

𝑅𝑒
𝜕𝑊
𝜕𝑍 .

Then the equations of motion can be rewritten as:

𝜕𝑃
𝜕𝑋 + 𝜕𝐹1

𝜕𝑋 + 𝜕𝐺1
𝜕𝑌 + 𝜕𝐻1

𝜕𝑍 = 0;

𝜕𝑃
𝜕𝑌 + 𝜕𝐹2

𝜕𝑋 + 𝜕𝐺2
𝜕𝑌 + 𝜕𝐻2

𝜕𝑍 = 0;

𝜕𝑃
𝜕𝑍 + 𝜕𝐹3

𝜕𝑋 + 𝜕𝐺3
𝜕𝑌 + 𝜕𝐻3

𝜕𝑍 + ̃𝜌
𝐹𝑟 = 0.

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

Solution of this system of equations is supposed to be performed using finite-
difference methods.
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3. Approximate Methods of
Solving the Radiation Transfer Equation

The analysis of regularity of radiation propagation in the radiant and absorbing envi-
ronment, made using the Bouguer [1] law, leads to the integro-differential transfer
equation of the following type

1
𝛽𝑣(𝑠)

𝑑𝐼𝑣(𝑠, Ω)
𝑑𝑠 + 𝐼𝑣(𝑠, Ω) = 𝑆𝑣(𝑠, Ω), (4)

where the spectral function of the source 𝑆𝑣(𝑠, Ω) is as follows

𝑆𝑣(𝑠, Ω) = (1 − 𝜔𝑣)𝐼𝑣𝑏(𝑇) +
1
4𝜋𝜔𝑣∫4𝜋

𝑝(Ω‵Ω)𝐼𝑣(𝑠, Ω‵)𝑑Ω‵. (5)

Here 𝜔𝑣 = 𝛼𝑣(𝑠)/𝛽𝑣(𝑠) = spectral albedo; 𝛼𝑣(𝑠) = scattering factor; 𝛽𝑣(𝑠) = expansion
coefficient; 𝐼𝑣 = spectral intensity of radiation; 𝐼𝑣𝑏= the same according to Planck for
a.b.b.; 𝑝(Ω‵Ω) = probability of radiation intensity in this direction; Ω‵Ω = cos 𝜃0, 𝜃0 =
Angle between incident and scattered rays. The last term of sum of the right part (5)
characterizes radiation indicatrix.

If at 𝑠 = 𝑠0𝐼𝑣(𝑠, Ω) = 𝐼0, the formal solution (4)

𝐼𝑣(𝑠, Ω) = 𝐼𝑣0 exp[−𝛽𝑣(𝑠‵)𝑑𝑠‵] +∫
𝑠

𝑠0
𝛽𝑣(𝑠‵)𝑆(𝑠‵, Ω) exp[−∫

𝑠

𝑠0
𝛽𝑣(𝑠‶)𝑑𝑠‶]𝑑𝑠‵.

Mathematical difficulties arising when solving integro-differential equations with real
indicatrix of radiation led to occurrence of a number of approximate methods in the
theory of transfer of radiation. In the approximation of optically thin and optically
thick layers (the latter is also called diffusion approximation, or Rosseland diffusion
approximation) are used simplifications arising from the limit value of the thickness of
the medium (other approximations are not considered here for space considerations).

Approximate methods are useful from the point of view that they provide with
various simple ways to solve complex problems of radiation transfer.
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4. Approximation of Optically Thin Layer

Approximation of the optically thin layer is based on the assumption that the optical
thickness of the medium τ0 is extremely small (i.e., τ0 << 1), in this case integro-
exponential functions are 𝐸𝑛(𝑧) = ∫1

0 𝜂
𝑛−2𝑒−𝑧/𝜂𝑑𝜂, where n = the order of the function,

and exponential can be represented as

𝐸2(𝜏) = 1 − 𝑂(𝜏); 𝐸3(𝜏) =
1
2 − 𝜏 + 𝑂(𝜏2); 𝑒−𝜏 = 1 − 𝜏 + 𝑂(𝜏2). (6)

If substitute these expressions in formal solutions considered earlier, it is possible to
receive relatively simple expressions for function of the source, intensity of radiation
on boundary surfaces, density of flux of result radiation and other values.

5. Expression for the Source Function

The formal solution for spectral function of the source in the assumption of isotropic
radiation and axial symmetry has the following form

𝑆𝑣(𝜏) = (1−𝜔𝑣)𝐼𝑣𝑏[𝑇(𝜏)]+
1
2𝜔𝑣[𝐼+𝑣 (0)𝐸2(𝜏)+𝐼−𝑣 (𝜏0)𝐸2(𝜏0−𝜏)+∫

𝜏0

𝜏‵=0
𝑆𝑣(𝜏‵)𝐸1(|𝜏 − 𝜏‵|)𝑑𝜏‵],

(7)
where T = absolute temperature; ν = frequency; 𝐼+𝑣 (0)and 𝐼−𝑣 (𝜏0) = spectral intensity of
radiation on the boundaries of the flat layer.

For optically thin layer (i.e., at τ0 << 1), substituting in (7) approximate expressions
(6) and ignoring terms of sum, having the order of τ0, we get

𝑆𝑣(𝜏) = (1 − 𝜔𝑣)𝐼𝑣𝑏[𝑇(𝜏)] +
1
2𝜔𝑣[𝐼+𝑣 (0) + 𝐼−𝑣 (0)].

The absence of an integral approximation here indicates that there is no expansion of
the radiation emitted by the media itself. The physical meaning of this phenomenon
is in negligible small influence of the radiation selfabsorption due to the very small
optical thickness of the medium.
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6. Expression for Radiation Intensity onBoundary Surfaces

Consider equations for the intensity of radiation on the boundary surfaces of the
isotropic scattering flat layer with diffuse reflective boundaries

𝐼+𝑣 (0) = 𝜀1𝑣𝐼𝑣𝑏(𝑇1) + 2𝑟𝑑1𝑣 [𝐼
−
𝑣 (𝜏0)𝐸3(𝜏0) +∫

1

0 ∫
𝜏0

0
𝑆𝑣(𝜏‵ − 𝜇‵)𝑒−𝜏‵/𝜇‵𝑑𝜏‵𝑑𝜇‵] 𝑎𝑡𝜇 > 0,

(8,a)

𝐼−𝑣 (𝜏0) = 𝜀2𝑣𝐼𝑣𝑏(𝑇2) + 2𝑟𝑑2𝑣 [𝐼
+
𝑣 (0)𝐸3(𝜏0) +∫

1

0 ∫
𝜏0

0
𝑆𝑣(𝜏‵ − 𝜇‵)𝑒−𝜏‵/𝜇‵𝑑𝜏‵𝑑𝜇‵] 𝑎𝑡𝜇 < 0,

(8,b)
where 𝜀1𝑣 and 𝜀2𝑣 = spectral hemisphere black degrees, 𝑟𝑑1𝑣 and 𝑟𝑑2𝑣 = spectral hemi-
spherical diffuse reflective abilities of boundary surfaces.

Given the approximate ratios (6) and neglecting the terms of sum, having the order
of τ0, rewrite equations (8) as follows

𝐼+𝑣 (0) = 𝜀1𝑣𝐼𝑣𝑏(𝑇1) + 𝑟𝑑1𝑣𝐼−𝑣 (𝜏0), 𝜇 > 0, (9,a)

𝐼−𝑣 (𝜏0) = 𝜀2𝑣𝐼𝑣𝑏(𝑇2) + 2𝑟𝑑2𝑣𝐼+𝑣 (0), 𝜇 < 0. (9,b)

Having solved this system regarding the intensity of radiation on the boundary
surfaces, we get

𝐼+𝑣 (0) =
𝜀1𝑣𝐼𝑣𝑏(𝑇1) + 𝑟1𝑣𝜀2𝑣𝐼𝑣𝑏(𝑇2)

1 − 𝑟1𝑣𝑟2𝑣
, 𝐼−𝑣 (𝜏0) =

𝜀2𝑣𝐼𝑣𝑏(𝑇2) + 𝑟2𝑣𝜀1𝑣𝐼𝑣𝑏(𝑇1)
1 − 𝑟1𝑣𝑟2𝑣

,

Where index d at r𝑖𝜈 is omitted for simplicity.

7. Expression for the Density of Monochromatic Flux of
the Resulting Radiation

The formal solution of the radiation transfer equation for the case of isotropic scattering
gives the following expression for the density of monochromatic radiation flow

𝑞𝑝𝑒3𝑣 (𝜏) = 2𝜋 [𝐼+𝑣 (0)𝐸3(𝜏) + ∫𝜏
0 𝑆𝑣(𝜏‵)𝐸2(𝜏 − 𝜏‵)𝑑𝜏‵]

−2𝜋 [𝐼−𝑣 (𝜏)𝐸3(𝜏0 − 𝜏) + ∫𝜏0
𝜏 𝑆𝑣(𝜏‵)𝐸2(𝜏 − 𝜏‵)𝑑𝜏‵] .

(10)
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When using equation (6), expression (10) is simplified and takes the form of

𝑞𝑝𝑒3𝑣 (𝜏) = 2𝜋 {𝐼+𝑣 (0) (
1
2 − 𝜏) +∫

𝜏

0
𝑆𝑣(𝜏‵)𝑑𝜏‵ − 𝐼−𝑣 (𝜏0) [

1
2 − (𝜏0 − 𝜏)] −∫

𝜏0

𝜏
𝑆𝑣(𝜏‵)𝑑𝜏‵}.

(11)
Here terms of sum of x0 remained and therefore this expression has the same order
of accuracy. If neglect terms of sum τ0, then equation (11) will be simplified and take
the form of

𝑞𝑝𝑒3𝑣 = 𝜋 [𝐼+𝑣 (0) − 𝐼−𝑣 (𝜏0)] . (11,a)

If the boundary surfaces are opaque and 𝑟1𝑣 = 1 − 𝜀1𝑣, 𝑟2𝑣 = 1 − 𝜀2𝑣, then, substituting
expressions (9) in (11a), we get

𝑞𝑝𝑒3𝑣 = 𝜋[𝐼𝑣𝑏(𝑇1) − 𝐼𝑣𝑏(𝑇2)]
1
𝜀1𝑣

+ 1
𝜀2𝑣

− 1
, (11,b)

that is, usual expression used to calculate density of the monochromatic flux of the
resulting radiation between two opaque plates separated by transparent medium.

8. Approximation of Optically Thick Layer (Approximation
of Rosseland, or Diffusion Approximation)

The medium is called optically thick, if average length of photon free path (i.e., the
value reverse to coefficient of expansion) is small in comparison with its characteristic
size. Themain advantage of this approximation is that it gives a very simple expression
for the flux density of the resulting radiation. We will further give a brief derivation of
the expression for monochromatic flux density in the approximation of an optically
dense layer.

Write formal solutions of the radiation transfer equation for the density of
monochromatic flux 𝑞𝑝𝑒3𝑣 (𝜏) and spectral function of the source S𝜈(τ):

𝑞𝑝𝑒3𝑣 (𝜏) = 2𝜋[∫
1

0
𝐼+𝑣 (0, 𝜇)𝑒−𝜏/𝜇𝜇𝑑𝜇 +∫

𝜏

0
𝑆𝑣(𝜏‵)𝐸2(𝜏 − 𝜏‵)𝑑𝜏‵]

−2𝜋[∫
1

0
𝐼−𝑣 (𝜏0, −𝜇)𝑒−(𝜏0−𝜏)/𝜇𝜇𝑑𝜇∫

𝜏0

𝜏
𝑆𝑣(𝜏‵)𝐸2(𝜏 − 𝜏‵)𝑑𝜏‵]

(12)
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and

𝑆𝑣(𝜏) = (1 − 𝜔𝑣)𝐼𝑣𝑏[𝑇(𝜏)] +
1
2𝜔𝑣[∫

1

0
𝐼+𝑣 (0, 𝜇)𝑒−𝜏/𝜇𝑑𝜇

+∫
1

0
𝐼−𝑣 (𝜏0, −𝜇)𝑒−(𝜏0−𝜏)/𝜇𝑑𝜇 +∫

𝜏0

𝜏‵=0
𝑆𝑣(𝜏‵)𝐸1(|𝜏 − 𝜏‵|)𝑑𝜏‵].

(13)

Perform decomposition of source function S𝜈(τ) in Taylor’s series in the vicinity τ

𝑆𝑣(𝜏‵) = 𝑆𝑣(𝜏) + (𝜏‵ − 𝜏)𝑑𝑆𝑣(𝜏)
𝑑𝜏‵ |𝜏 +

1
2! (𝜏

‵ − 𝜏)2𝑑
2𝑆𝑣(𝜏)
𝑑𝜏‵2 |𝜏 + ... (14)

For optically thick medium τ, τ0 and (𝜏0 − 𝜏) are very large everywhere, except areas
near the boundaries. Thus, the areas far from the boundaries are considered, where it
can be assumed that 𝜏, 𝜏0 and (𝜏0 − 𝜏) >> 1.
For great τ integro-exponential and exponential functions tend to zero

𝑒−𝜏 → 0, 𝐸𝑛(𝜏) → 0, 𝜏𝑛𝐸𝑛(𝜏) → 0 𝜏 → 0, 𝑛 = 1, 2, 3, ... (15)

Substituting expansion (14) in (12) and (13), taking in parts integrals with variable
integration τ’ and simplifying the received expressions with the help of equation (15),
we get

𝑞𝑝𝑒3𝑣 (𝑦) = −𝜆𝑟
𝑑𝑇
𝑑𝑦 , 𝜆𝑟 ≡

16𝑛2𝜎𝑇 3

3𝛽𝑅
. (16)

Coefficient λ𝑟 is called the coefficient of radiant thermal conductivity by analogywith
the coefficient of thermal conductivity known in the theory of thermal conductivity.
Expression (24) has the same appearance as relevant expression for the heat flux
density due to thermal conductivity; it can be seen that approximation of an optically
thick layer describes the process of radiation transfer as a diffusion process.

The last expressions are called Rosseland approximation or diffusion approximation
for density of a radiation flux, Rosseland average expansion coefficient 𝛽𝑅 can be
calculated by means of the function of radiation of the second kind.

9. Summary

On the stated equations on the basis of the method of control volume the numerical
scheme which can be implemented in any programming language for automation of
calculations is developed.
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