
 

TIM’2018
VII All- Russian Scientific and Practical Conference of Students,
Graduate Students and Young Scientists on
“Heat Engineering and Computer Science in Education, Science and Production”
Volume 2018

Conference Paper

Mathematical Model of Limestone Calcining in
the Shaft Furnace
Vladimir Shvydkii, Sergei Kudelin, and Vladislav Noskov
Ural Federal University (UrFU), Yekaterinburg, Russia

Abstract
The article reviews the operation principle of the shaft furnace for calcination of
carbonate materials and the options for description of thermophysical processes
occurring in these furnaces. It provides equations of heat transfer by radiation and
convection, special features of thermal interaction between the gas flow and surface
of solid particles, influence of thermophysical properties and content of particles on
efficiency of furnace performance as well as the possible chemistry of reactions to
lime dissociation parameters.
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1. Problem Statement

The problem [1] has been stated as follows. Carbonate materials in the quantity of
𝐺0
m, kg/s with the initial temperature of t0, C are charged into the shaft furnace. Fuel

combustion products in the quantity of V𝑐𝑜𝑚𝑏, m3/s with the temperature of T0, C are
delivered to the furnace bottom (cooling zone is not provided for). When the surface
temperature of the descending material lump reaches t, the solid-state reaction of
thermal decomposition of limestone starts in this lump. It is necessary to determine the
change in the process variables throughout the height of the furnace if the (volumetric)
coefficient of convective heat exchange between gas and material considering the
internal heat resistance of the lump is equal to 𝛼V, W/(m3.K) and the limestone disso-
ciation reaction heat isΔH, J/kg. The heat losses into the environment are characterized
by the heat-transfer coefficient k* = k.F/V = 4k/D as a fraction of the bed volume unit,
where k is a coefficient of heat transfer through the wall reflecting intensity of heat
transfer from furnace gases to the ambient air; F is an area of the internal surface of
the furnace walls; V is a volume of the furnace work space and D is a furnace diameter.
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2. Mathematical Model

Close to the stockline level, one cubic meter of the bed contains 𝜌0𝑚(1 − 𝜖), kg of solid
materialswhere 𝜌0𝑀 (1−𝜖)𝐶0, kg is a quantity of limestone; here 𝜌0𝑚is an apparent density
of the charged material (lump); 𝜖 is a fractional void volume of the bed; C0is a content
of CaCO3 in the materials charged in the furnace.

According to the reaction of thermal decomposition CaCO3→ CaO + CO2 +ΔH, carbon
dioxide is released in the quantity of 43.97 kg per 100 kg of calcium carbonate. In this
case, the source intensity of gas is determined by the following equation:

𝑞𝑔 = 0.4397𝜌0𝑚(1 − 𝜖)𝐶0
𝑑 𝜉
𝑑 𝜏 𝑘𝑔/(𝑚

3.𝑠),

where 𝜉 is a degree of limestone decomposition; 𝜏 is a current time of calcination.

The outflow intensity of the material mass will be the same regarding the absolute
value. For the steady-state rate of the calcining process, the current time is expressly
connected with the time required for the material to reach this bed level z. If the
coordinate z is directed away from the stockline level along the material flow, the
proportion d𝜏 = dz/w𝑚 will be true, where w𝑚is a material flow velocity. Within the
one-dimension model, the material flow velocity wm depends only on the furnace
cross-section area S as w𝑚S = const; otherwise, the flow continuity will be broken.
Based on the general equation of the local mass balance of the moving medium [2, 3],
the following equations can be written:

𝑑(𝜌𝑉𝑔)
𝑑𝑧 = −0.4397𝐶0𝐺0

𝑚
𝑑𝜉
𝑑𝑧 =

𝑑𝐺
𝑑𝑧 ; (1)

𝑑𝐺𝑚
𝑑𝑧 = −0.4397𝐶0𝐺0

𝑚
𝑑𝜉
𝑑𝑧, (2)

where 𝜌 is a density of furnace gases being a function of z; V𝑔 is a local volumetric
gas flow rate; G = 𝜌V𝑔 = 𝜌𝜖|w𝑔 |S and G𝑚 = 𝜌𝑀(1 − 𝜖)w𝑚S are mass flow rates of gas
and material; w𝑔 is a gas velocity in the bed space between the lumps; S is a furnace
cross-section area; 𝜌𝑚 is a local apparent density of material lumps.

Considering that 𝜉 = 0 at z = 0, we integrate the equation (2) in the range from 0 to
z. As only the degree of dissociation 𝜉 depends on z, we have the following result:

G𝑚(z) − 𝐺0
𝑚 = −0.4397C0𝐺0

𝑚𝜉(z);G𝑚(z) = [1 − 0.4397C0𝜉(z)], (3)

or

𝜌𝑚(z) = 𝜌0𝑚[1 − 0.4397C0𝜉(z)]. (3,a)
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For two successive bed levels z1 and z2 the equation (3) can be written as

G𝑚(z2) − G𝑚(z1) = −0.4397C0𝐺0
𝑚[𝜉(z2) − 𝜉(z1)]. (4)

In the same way, integrating the equation (1) in the range from z to H (with the degree
of limestone decomposition being changed from 𝜉 to 𝜉* where 𝜉* is a degree of
limestone decomposition on exit from the calcining zone), we get

G(z) = 𝜌(z)V𝑔(z) = 𝜌𝑐𝑜𝑚𝑏V𝑐𝑜𝑚𝑏 + 0.4397C0𝐺0
𝑚[𝜉 ∗ −𝜉(z)] =

= 𝜌𝑐𝑜𝑚𝑏𝑉 𝑐𝑜𝑚𝑏 + G𝑚(z) − G𝑚(H),
(5)

where 𝜌𝑐𝑜𝑚𝑏 is a density of injected combustion products; H is a bed height (point of
gas injection).

When writing the heat transfer equations, it is necessary to consider that generally
the process of thermal decomposition runs in the volume of a lump and, consequently,
it is reasonable to assign the heat input for dissociation to the material. Then, the heat
outflow intensity in the material q𝑡.𝑚. will be

𝑞t.m = −𝜌0𝑚(1 − 𝜖)𝐶0Δ𝐻
𝑑 𝜉
𝑑 𝜏 = −𝐺

0
𝑚𝐶0Δ𝐻
𝑆

𝑑 𝜉
𝑑 𝑧. (6)

Consequently, the following equations can be written as

𝑐𝑚𝐺𝑚
𝑑𝑡
𝑑𝑧 = 𝛼Σ𝑉 𝑆(𝑇 − 𝑡) − 𝐺0

𝑚𝐶0Δ𝐻
𝑑𝜉
𝑑𝑧; (7)

𝑐𝐺𝑑𝑇𝑑𝑧 = 𝛼Σ𝑉 𝑆(𝑇 − 𝑡) + 𝑘∗𝑆(𝑇 − 𝑇OK), (8)

with the following conditions being met

𝑡 = 𝑡0 = const at 𝑧 = 0,

𝑇 = 𝑇0 = const at 𝑧 = 𝐻.

⎫⎪
⎬
⎪⎭

(9)

Here t is a bulk temperature of the material lump, ∘C; T𝑎𝑚𝑏 is an ambient (air) temper-
ature, ∘C and T is a temperature of furnace gases, ∘C; c and c𝑚 are specific heat of gas
and material, J/(kg.К).
The system (1) – (9) is closed by the equation of thermal decomposition. As an earlier

analysis has shown, the degree of limestone dissociation shall be calculated by two
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equations. At 𝜉 ≤ 0.1 (when the dissociation front is close to the external surface of
the lump) the following equation is used:

𝜉 = 0.8 𝑆
𝐺0
m𝐶0 ∫

𝑧

𝑧𝑖

𝛼𝑉
Δ𝐻 (𝑇 − 𝑡p)𝑑𝑧, (10)

where z𝑖 is a bed level where the surface temperature of the lump reaches the value
of t; 𝛼𝑉 is a volumetric coefficient of heat transfer between gas and the lump surface.

The reaction temperature is set in accordance with recommendations given by N. P.
Tabunschikov [4], that is, it is determined by the following equation:

t = 740 + 0.148 ⋅ T + 0.13 ⋅ 𝐶𝑂2, (11)

where CO2 is a content of carbon dioxide in furnace gases.

At 𝜉 ≥ 0.1 the limestone dissociation equation obtained by us from the condition
of thermal flow density equality to zero in the lump center is used. This equation is
approximate and needs to be validated experimentally. It is written as

𝑑𝜉
𝑑𝑧 =

12 𝜆𝑒(1 − 𝜖)𝑆
𝐺0
𝑚𝐶0Δ𝐻𝑑2𝑙

(1 − 𝜉)2/3
1 − (1 − 𝜉)1/3 ×{(𝑡𝑠 − 𝑡𝑐)(1 − 𝜉)2/3 + (𝑡p − 𝑡𝑐) [

2
(1 − 𝜉)1/3 − 3]} , (12)

where 𝜆𝑒 is an effective conductivity of the lump; d𝑙 is a lump diameter; t𝑠is a surface
temperature and t𝑐 is a lump center temperature.

The values of the surface temperature and lump center temperature required for
the equation (12) can be determined in accordance with recommendations given in
[5]. They are determined by the following equations:

𝑡𝑠 = 𝑇 − 1.25 𝑐𝑚𝜌𝑚
𝜌0𝑚𝛼𝑉

𝐺0
𝑚
𝑆

𝑑𝑡
𝑑𝑧; (13)

𝑡𝑠 − 𝑡c =
𝑐𝑚𝜌𝑚𝐺0

𝑚𝑑2𝑙
24 𝜆𝑒𝜌0𝑚(1 − 𝜖)𝑆

𝑑𝑡
𝑑𝑧 (14)

or

𝑡𝑠 − 𝑡𝑐 = 2.5(𝑇 − 𝑡) − 3.125𝑐𝑚𝜌𝑚𝐺
0
𝑚

𝜌0𝑚𝛼𝑉 𝑆
𝑑𝑡
𝑑𝑧. (14,a)

Here the line above the value of c𝑚𝜌𝑚 means averaging over the lump volume.
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3. Mathematical Model Solution

The described mathematical model is highly nonlinear and, therefore, it can be solved
only by numerical iterative methods [1, 2]. For numerical solutions, it is always more
convenient to work with values commensurable to one [1]. In this regard, we reduced
the system of the main equations to a nondimensional form.

We have introduced a nondimensional coordinate of Z = z/H and temperature:

𝜃 = 𝑇 − 𝑡0
𝑇0 − 𝑡0

, 𝜗 = 𝑡 − 𝑡0
𝑇0 − 𝑡0

, 𝜃OK =
𝑇OK − 𝑡0
𝑇0 − 𝑡0

.

Then, the heat-transfer equations (7) and (8) can be written as follows:

𝑑𝜗
𝑑𝑍 = 𝛼Σ𝑉 𝑉

𝑐𝑚𝐺𝑚
(𝜃 − 𝜗) − 𝐶0𝐺0

𝑚Δ𝐻
𝑐𝑚𝐺𝑚(𝑇0 − 𝑡0)

𝑑𝜉
𝑑𝑍 ; (15)

𝑑𝜃
𝑑𝑍 = 𝛼Σ𝑉 𝑉

𝑐𝐺 (𝜃 − 𝜗) + 𝑘∗𝑉
𝑐𝐺 (𝜃 − 𝜃OK). (16)

The calculation of the heat-transfer coefficient through the wall k depends on the
furnace dimensions. If the furnace diameter is large enough and the thickness of the
wall layers is relatively small, we can use a formula that is true for a multilayer flat
wall:

𝑘 =
(

1
𝛼𝐹

+
𝑛

∑
𝑖=1

𝑆𝑖
𝜆𝑖

+ 1
𝛼𝑒𝑥𝑡)

−1

, 𝑊 /(m2 ⋅ ). (17)

Here 𝛼𝐹 and 𝛼𝑒𝑥𝑡 are heat-transfer coefficients on the internal and external surfaces
of the wall; S𝑖 is a thickness of the i-th brickwork layer and 𝜆𝑖 is its heat conductivity
coefficient; n is a total number of the brickwork layers.

In those cases when the wall thickness is commensurable to the furnace diameter,
it is necessary to consider the wall roundness:

𝑘 =
(

1
𝛼𝐹𝑑1

+ 1
2

𝑛

∑
𝑖=1

1
𝜆𝑖
ln
𝑑𝑖+1
𝑑𝑖

+ 1
𝛼𝑒𝑥𝑡𝑑𝑛+1)

−1

. (18)

At the first stage of the solution, we will assume that the function Ξ(Z) is known.
When going to finite differences in the equations (15) and (16), wewill use the simplest
form of approximation [1, 2], that is, the right difference, compensating first-order
errors of approximation by decreasing the step size of ΔZ. For calculation of variables,
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we will take temperatures and degrees of dissociation from the previous step. Then,
instead of equations (15) and (16) we can write as follows:

𝜗𝑖+1 − 𝜗𝑖
Δ𝑍 = (

𝛼𝑉 𝑉
𝑐𝑚𝐺𝑚)𝑖

(𝜃𝑖 − 𝜗𝑖) −
𝐶0𝐺0

𝑚
(𝑇0 − 𝑡0)

⋅ (
Δ𝐻
𝑐𝑚𝐺𝑚)𝑖

𝜉𝑖+1 − 𝜉𝑖
Δ𝑍 , (19)

𝜃𝑖+1 − 𝜃𝑖
Δ𝑍 = (

𝛼𝑉 𝑉
𝑐 𝐺 )𝑖

(𝜃𝑖 − 𝜗𝑖) + (
𝑘∗𝑉
𝑐 𝐺 )𝑖

(𝜃𝑖 − 𝜃OK) , (20)

or in an expanded form:

𝜗𝑖+1 = [1 − (
𝛼𝑉 𝑉
𝑐𝑚𝐺𝑚)𝑖

Δ𝑍] 𝜗𝑖 + (
𝛼𝑉 𝑉
𝑐𝑚𝐺𝑚)𝑖

Δ𝑍 ⋅ 𝜃𝑖−

− 𝐶0𝐺0
𝑚

(𝑇0 − 𝑡0)
⋅ (

Δ𝐻8

𝑐𝑚𝐺𝑚)𝑖
(𝜉𝑖+1 − 𝜉𝑖) ,

(19,a)

𝜃𝑖+1 = [1 + (
𝛼𝑉 𝑉
𝑐 𝐺 )𝑖

Δ𝑍 + (
𝑘∗𝑉
𝑐 𝐺 )𝑖

Δ𝑍] 𝜃𝑖 − (
𝛼𝑉 𝑉
𝑐 𝐺 )𝑖

Δ𝑍 ⋅ 𝜗𝑖−

−(
𝑘∗𝑉
𝑐 𝐺 )𝑖

Δ𝑍 ⋅ 𝜃OK .

(20,a)

When the temperature of the material increases at the previous step, its temperature
cannot decrease at the next step. Therefore, there are restrictions for the step size of
ΔZ resulting from the equation (19,a):

1 − (
𝛼𝑉 𝑉
𝑐m𝐺𝑚)𝑖

Δ𝑍 ≥ 0 or ΔZ ≤ 1/(
𝛼𝑉 𝑉
𝑐𝑚𝐺𝑚)𝑖

. (21)

We introduce the following designations:

𝐴1𝐺𝑖 = (
𝛼𝑉 𝑉
𝑐𝑚𝐺𝑚)𝑖

Δ𝑍; 𝐴1𝑀𝑖 = 1 − (
𝛼𝑉 𝑉
𝑐𝑚𝐺𝑚)𝑖

Δ𝑍 = 1 − 𝐴1𝐺𝑖;

𝐴2𝑀𝑖 = (
𝛼𝑉 𝑉
𝑐 𝐺 )𝑖

Δ𝑍; 𝐷1𝑖 =
𝐶0𝐺0

𝑚
(𝑇0 − 𝑡0)

⋅ (
Δ𝐻8

𝑐𝑚𝐺m)𝑖
(𝜉𝑖+1 − 𝜉𝑖);

𝐷2𝑖 = (
𝑘∗𝑉
𝑐 𝐺 )𝑖

Δ𝑍 ⋅ 𝜃OK;

𝐴2𝐺𝑖 = 1 + (
𝛼𝑉 𝑉
𝑐 𝐺 )𝑖

Δ𝑍 + (
𝑘∗𝑉
𝑐 𝐺 )𝑖

Δ𝑍 = 1 + 𝐴2𝑀𝑖 +𝐷2𝑖/𝜃OK .
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Then, the equations (19,a) and (20,a) can be rewritten in a compact form:

𝜗𝑖+1 = A1𝑀 𝑖.𝜗𝑖 + A1𝐺𝑖.𝜃𝑖 − D1𝑖; (22)

𝜃𝑖+1 = −A2𝑀 𝑖.𝜗𝑖 + A2𝐺𝑖.𝜃𝑖 − D2𝑖. (23)

We will solve the system (22), (23) by the sweep method [3]. Let’s assume that

𝜗𝑖 = 𝜌𝑖.𝜃𝑖 + 𝛽𝑖, (24)

with 𝜌0 = 0, 𝛽0 = 0. Putting (24) in the equation (22), we will obtain

𝜌𝑖+1𝜃𝑖+1 + 𝛽𝑖+1 = 𝐴1𝑀𝑖(𝜌𝑖𝜃𝑖 + 𝛽𝑖) + 𝐴1𝐺𝑖𝜃𝑖 − 𝐷1𝑖 =

= (𝐴1𝑀𝑖 ⋅ 𝜌𝑖 + 𝐴1𝐺𝑖)𝜃𝑖 + (𝐴1𝑀𝑖 ⋅ 𝛽𝑖 − 𝐷1𝑖) .
(25)

But from the equation (23) we find

𝜃𝑖+1 = −𝐴2𝑀𝑖(𝜌𝑖𝜃𝑖 + 𝛽𝑖) + 𝐴2𝐺𝑖 ⋅ 𝜃𝑖 −𝐷2𝑖 =

= (𝐴2𝐺𝑖 − 𝐴2𝑀𝑖 ⋅ 𝜌𝑖)𝜃𝑖 − (𝐴2𝑀𝑖 ⋅ 𝛽𝑖 +𝐷2𝑖) .

Consequently, we have

𝜌𝑖+1(𝐴2𝐺𝑖 − 𝐴2𝑀𝑖 ⋅ 𝜌𝑖)𝜃𝑖 − 𝜌𝑖+1(𝐴2𝑀𝑖 ⋅ 𝛽𝑖 + 𝐷2𝑖) + 𝛽𝑖+1 =

= (𝐴1𝑀𝑖 ⋅ 𝜌𝑖 + 𝐴1𝐺𝑖)𝜃𝑖 + (𝐴1𝑀𝑖 ⋅ 𝛽𝑖 −𝐷1𝑖) ,

wherefrom we obtain two equations:

𝜌𝑖+1(𝐴2𝐺𝑖 − 𝐴2𝑀𝑖 ⋅ 𝜌𝑖) = 𝐴1𝐺𝑖 + 𝐴1𝑀𝑖 ⋅ 𝜌𝑖 ;

𝛽𝑖+1 = 𝐴1𝑀𝑖 ⋅ 𝛽𝑖 − 𝐷1𝑖 + 𝜌𝑖+1(𝐴2𝑀𝑖 ⋅ 𝛽𝑖 + 𝐷2𝑖) .
(26)

Thus, the coefficients of the direct sweep are determined by the following equations:

𝜌𝑖+1 =
𝐴1𝐺𝑖 + 𝐴1𝑀𝑖 ⋅ 𝜌𝑖
𝐴2𝐺𝑖 − 𝐴2𝑀𝑖 ⋅ 𝜌𝑖

; 𝜌1 =
𝐴1𝐺1
𝐴2𝐺1

< 1 ; (27)

𝛽𝑖+1 = 𝐴1𝑀𝑖 ⋅ 𝛽𝑖 − 𝐷1𝑖 +
𝐴1𝐺𝑖 + 𝐴1𝑀𝑖 ⋅ 𝜌𝑖
𝐴2𝐺𝑖 − 𝐴2𝑀𝑖 ⋅ 𝜌𝑖

(𝐴2𝑀𝑖 ⋅ 𝛽𝑖 +𝐷2𝑖) ;

𝛽1 = −𝐷11 +
𝐴1𝐺1
𝐴2𝐺1

⋅ 𝐷21 .
(28)
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In the formulas (27), (28) i = 1, 2, 3, …, N – 1. At the last step of the direct sweep we
find 𝜌𝑁 , 𝛽𝑁 and 𝜗𝑁 = 𝜌𝑁 .𝜃𝑁 + 𝛽𝑁 = 𝜌𝑁 + 𝛽𝑁 . Consequently, by the reverse sweep for i
= N – 1, N – 2,…, 1 from the equation system

𝐴1𝑀𝑖 ⋅ 𝜗𝑖 + 𝐴1𝐺𝑖 ⋅ Θ𝑖 = 𝜗𝑖+1 + 𝐷1𝑖 ,

−𝐴2𝑀𝑖 ⋅ 𝜗𝑖 + 𝐴2𝐺𝑖 ⋅ Θ𝑖 = Θ𝑖+1 + 𝐷2𝑖
(29)

we can calculate successively all gas temperatures, and using the formula (24) – the
temperature of the material. In this case

𝜃𝑖 =
𝐴1𝑀𝑖(𝜃𝑖+1 +𝐷2𝑖) + 𝐴2𝑀𝑖(𝜗𝑖+1 + 𝐷1𝑖)

𝐴1𝑀𝑖 ⋅ 𝐴2𝐺𝑖 + 𝐴2𝑀𝑖 ⋅ 𝐴1𝐺𝑖
;

𝜗𝑖 = 𝜌𝑖𝜃𝑖 + 𝛽𝑖 .
(30)

The analysis of the obtained equations shows that if the condition (21) is satisfied all
the sweep coefficients and all nondimensional temperatures are positive and do not
exceed 1. A solution example is shown in Figure 1.

Figure 1: A solution example:I = lump heating zone, II = surface calcining zone, III = cooling zone;1 = center
temperature, 2 = temperature, 3 = gas temperature.

4. Conclusion

We have developed a mathematical model of limestone calcination (dissociation) in
the shaft furnace. The model makes it possible to explore different patterns of gas

DOI 10.18502/keg.v3i5.2651 Page 23



 
TIM’2018

mechanics in the furnace, optimize its design and operating parameters, reduce power
consumption for limestone production. As an initial model approximation, any experi-
mental data or solution of a one-dimensional problem of heat transfer and dissociation
can be used.
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