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Abstract
The GERmanium Detector Array (GERDA) experiment is searching for the neutrinoless
double beta decay (0𝜈𝛽𝛽) of the isotope 76Ge. High-purity germanium crystals enriched
in 76Ge, simultaneously used as source and detector, are directly deployed into ultra-
pure, cryogenic liquid argon, which acts both as cooling medium and shield against
the external radiation. The second phase of the experiment is taking data since end
of 2015 with 20 additional kg of custom-made BEGe-type Germanium detectors and
an active LAr veto. In this paper we will summarize the results of the last data release
of June 2017. No evidence for a possible signal is found: the lower limit for the half-
life of 76Ge is 8.0 ⋅ 1025 yr at 90% CL. The very low residual background found at the
𝑄-value of the decay, about 10−3 cts/(keV⋅kg⋅yr), makes G˘˥˗˔ the first experiment
in the field to be background-free for the complete design exposure of 100 kg⋅yr.

1. Introduction

The neutrinoless double beta decay (0𝜈𝛽𝛽) is a hypothetical lepton-number-violating
nuclear transition predicted by several extensions of the Standard Model of particle
physics. Its detection would prove that neutrinos have a Majorana mass component [1,
2] and that lepton number is not conserved, thus providing a possible answer to the
matter-antimatter asymmetry in the Universe and the origin of neutrino masses [3–5].

Searches for 0𝜈𝛽𝛽 are ongoing in a number of experiment around the world using
different nuclei as 76Ge [6, 7], 136Xe [8–10] and 130Te [11, 12]. The experimental signa-
ture of 0𝜈𝛽𝛽 is a peak in the distribution of the energy sum of two electrons at the
Q-value of the decay (𝑄𝛽𝛽). Typically only a few signal counts per kg per year are
expected: therefore a very strong suppression of all background sources and a high
energy resolution are required.

2. The GERDA experiment

The GERDA experiment [13], located at the underground Laboratori Nazionali del Gran
Sasso (LNGS) of INFN in Italy, operates bare high-pure germanium detectors (HPGe) in
liquid argon (LAr), which cools the detectors to their operating temperature of about
90 K and shields them from external radiation. The 64 m3 LAr cryostat is contained in
a 590 m3 water tank, filled with ultra-pure water and equipped with photomultipliers,
thus acting both as Cerenkov veto and additional shield. On the top of the water tank a
clean roomwith a glove box and a lock is used for the assembly of HPGe detectors into
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strings. The HPGes are arranged in an array of 6 strings hosting detectors enriched in
76Ge (𝑒𝑛𝑟Ge): 7 coaxial detectors from the former Heidelberg-Moscow [14] and IGEX [15]
experiments, and 30 newly developed Broad Energy germanium (BEGe) detectors [16]
featuring superior pulse shape discrimination performance [17, 18]. The detector array
is complemented with a central string instrumented with three coaxial detectors made
from germanium of natural isotopic composition. In Phase II, the cylindrical volume
around the detector strings is instrumentedwith a curtain ofwavelength-shifting fibres
read out at both endswith 90 silicon photomultipliers (SiPMs). Sixteen low-background
photomultipliers (PMTs) are mounted below and above of the HPGe array.

All Ge detectors are connected to low radioactivity charge sensitive amplifiers. The
charge signal traces are digitized with a 100 MHz sampling rate and a total window
of 160 𝜇s. Data are stored on disk and analyzed offline using the procedure described
in [19, 20].

3. Data taking and event selection

GERDA is taking data since 2011. Data from the first phase of GERDA (Phase I) gave no
positive indication of the 0𝜈𝛽𝛽 decay with an exposure of about 21.6 kg⋅yr and a back-
ground index at the𝑄𝛽𝛽= (2039.061±0.007) keV of 10−2 cts/(keV⋅kg⋅yr). A lower limit on
the half-life of the process of 𝑇 0𝜈

1/2> 2.1⋅1025 yr (90% C.L.) was set [19]. The second phase
(Phase II), is ongoing since December 2015 and initial results were released in June 2016
with 10.8 kg⋅yr of total exposure and a background index of 10−3 cts/(keV⋅kg⋅yr) [6].
In June 2017 new data collected up to April 15𝑡ℎ 2017 have been fully validated and
analyzed for a total exposure of 34.4 kg⋅yr of 𝑒𝑛𝑟Ge (18.2 kg⋅yr from BEGe detectors
and 16.2 kg⋅yr from coaxial detectors) [21].

The offline data analysis flow foresees a blind approach: eventswith a reconstructed
energy in the interval 𝑄𝛽𝛽±25 keV are not analysed but only stored on disk. After the
entire analysis procedures and parameters have been frozen, these blinded events are
processed.

Unphysical events, originating from electrical discharges or bursts of noise, are
rejected by a set of multi-parametric cuts based on the flatness of the baseline,
polarity and time structure of the pulse. Physical events at 𝑄𝛽𝛽 are accepted with an
efficiency greater than 99.9% while no unphysical event survives the cuts above 1.6
MeV.

In 92% of 0𝜈𝛽𝛽 decays occurring in the active detector volume, the total 0𝜈𝛽𝛽 energy
is detected in that detector. Therefore multiple detector coincidences are discarded as
background events. In order to discriminate time-correlated decays from primordial
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radioisotopes, such as the radon progenies 214Bi and 214Po, two consecutive candidate
events within 1 ms are rejected. Candidate events are also rejected if a muon trigger
occurred within 10 𝜇s before a germanium detector trigger or if any of the LAr light
detectors record a signal of amplitude above 50% of the expectation for a single photo-
electron within 5 𝜇s from the germanium trigger.

The deposited energy is reconstructed with an improved digital filter [22] optimized
for each detector and each calibration. The energy scale and resolution is set by taking
weekly calibration with 228Th sources. The stability of the scale is continuously mon-
itored by injecting charge pulses (test pulses) with a rate of 0.05 Hz and, weekly, by
checking the shift of the position of the 2615 keV 𝛾 line between two consecutive
calibration (Fig. 1a). The average resolution at 𝑄𝛽𝛽 , evaluated by using the calibration
data, is shown in Fig. 1b; for coaxial detectors the width of the strongest 𝛾 lines in the
physics data (1460 keV from 40K and 1525 keV from 42K) is found to be 0.5 keV larger
than expected, probably due to gain instabilities in the corresponding readout channels
between calibrations. The effect is accounted for by including a correction term; the
average resolution at 𝑄𝛽𝛽 is 3.90(7) keV and 2.93(6) keV FWHM for the 𝑒𝑛𝑟Ge coaxial
and BEGe detectors, respectively.

Due to the short range of electrons in germanium (∼1 mm), 0𝜈𝛽𝛽 decays produce
a localized energy deposit. The time profile of the Ge current signal can be used to
disentangle 0𝜈𝛽𝛽 decays (single-site events, SSE) from background events such as
𝛾-rays, which mainly interact via Compton scattering with an average free path of
∼1 cm (multi-site events, MSE), or external 𝛼/𝛽-rays, which deposit their energy on
the detector surface. The geometry of the BEGe detectors allows the application of
a simple mono-parametric Pulse Shape Discrimination (PSD) technique based on the
maximum of the detector current pulse A normalized to the total energy E [17, 18, 23].
The cut on 𝐴/𝐸 allows to reject > 90% of (𝛾-like) MSEs and basically all 𝛼-like surface
events, with a 0𝜈𝛽𝛽 selection efficiency of (87 ± 2)%. For coaxial detectors two neural
network algorithms (ANN) are applied to discriminate SSEs from MSEs and from 𝛼
surface events [18] with a combined selection efficiency for 0𝜈𝛽𝛽 decays of (79 ± 5)%.

4. Statistical analysis and results

In June 2017, data from the BEGe detectors taken between June 1, 2016 and April 15,
2017 has been unblinded, providing an additional exposure of 12.4 kg⋅yr with respect
to [6]. Two extra events passing all selection cuts are found in the blinded energy
region; both of them being more than 15 keV away from 𝑄𝛽𝛽 (namely > 10𝜎) they
cannot be attributed to 0𝜈𝛽𝛽 decay. Due to a recently identified background population
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Figure 1: (a) Average shift of the 2615 keV 𝛾-ray line between consecutive calibrations. The error bars
represent the standard deviation of the shifts of the individual detectors. (b) Average energy resolution
for 𝛾 lines observed in calibration data and in physics data, for the BEGe and coaxial detectors. The inset
displays a zoom of the 𝛾 lines at 1460 keV (40K) and 1525 keV (42K) in physics data, and a zoom of the
2615 keV line from calibration data.

not efficiently rejected by ANN PSD, data from coaxial detectors (11.2 kg⋅yr) were not
unblinded. It will be unblinded in a future data release, when a new cut is developed to
suppress this background. The background in the signal region is 10−3 cts/(keV⋅kg⋅yr)
for BEGe detectors and 2.7×10−3 cts/(keV⋅kg⋅yr) for coaxials. The energy spectra
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around 𝑄𝛽𝛽 for Phase I, Phase II coaxial detectors and Phase II BEGe detectors (after
all cuts) are shown in Fig. 2.

The total exposure available for analysis is (471.1 ± 8.5) mol⋅yr of 76Ge. Both a fre-
quentist and a Bayesian analysis, based on an unbinned extended likelihood function
described in the Methods Section of Ref. [6], is performed. The fit function is a flat
distribution for the background and a Gaussian centered at 𝑄𝛽𝛽 with a width according
to the resolution for a possible 0𝜈𝛽𝛽 signal. The signal strength S = 1/𝑇 0𝜈

1/2 is calculated for
each data set (both for Phase I and Phase II, for coaxial and BEGe detector respectively)
according to its exposure and efficiencywhile the inverse half-life 1/T is a common free
parameter. The analysis accounts for the systematic uncertainties due to efficiencies
and energy resolutions, and to a possible offset in the energy scale. The limit on the
half-life of 76Ge is 𝑇 0𝜈

1/2> 8.0 ⋅ 1025 yr (90% CL) (frequentist) and 𝑇 0𝜈
1/2> 5.1 ⋅ 1025 yr

(Bayesian), while the median sensitivity for the 90% CL lower limit of 𝑇 0𝜈
1/2 is 5.8⋅1025 yr

(frequentist) and 𝑇 0𝜈
1/2> 4.5 ⋅ 1025 yr (Bayesian).

5. Conclusions

The GERDA experiment is currently taking data. The ambitious design goal for the
background level of 10−3 cts/(keV⋅kg⋅yr) was fulfilled, thus, making G˘˥˗˔ the first
“background-free” experiment for the whole design exposure; the sensitivity is there-
fore expected to grow linearly with the exposure and the median sensitivity is
expected to reach 1026 yr within 2018. At present, thanks to the powerful pulse shape
discrimination of BEGe detectors and to the detection of the argon scintillation light,
GERDA has reached the world-best background index (BI) at 𝑄𝛽𝛽 if weighted with the
energy resolution of the detectors.

The excellent performances in terms of background index and energy resolution
motivates a future extension of the program in a medium term time scale. The LEGEND
collaboration aims to build a 200 kg enriched germanium experiment using the GERDA
cryostat. Such an experimentwould remain background-free up to an exposure of 1000
kg⋅yr provided the background can be further reduced by a factor 5-10;; thus LEGEND-
200 [24] would allow to reach a half-life of 1027 yr. The 200 kg project is conceived as
a first step towards a more ambitious 1-ton experiment that would allow to reach a
sensitivity of 1028 yr, thus, fully covering the inverted hierarchy region in ten years of
data taking.
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Figure 2: Energy spectra around 𝑄𝛽𝛽 for Phase I, Phase II coaxial detectors and Phase II BEGe detectors
after all cuts. The binning is 2 keV. The blue lines show the hypothetical 0𝜈𝛽𝛽 signal for 𝑇 0𝜈

1/2= 8.0 ⋅ 1025 yr,
sitting on the constant background.
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